• 제목/요약/키워드: Magnetite nanoparticles

검색결과 66건 처리시간 0.028초

Controlling size and magnetic properties of Fe3O4 clusters in solvothermal process

  • Madrid, Sergio I. Uribe;Pal, Umapada;Jesus, Felix Sanchez-De
    • Advances in nano research
    • /
    • 제2권4호
    • /
    • pp.187-198
    • /
    • 2014
  • Magnetite nanoparticles (MNPs) of different sizes were synthesized by solvothermal process maintaining their stoichiometric composition and unique structural phase. Utilizing hydrated ferric (III) chloride as unique iron precursor, it was possible to synthesize sub-micrometric magnetite clusters of sizes in between 208 and 381 nm in controlled manner by controlling the concentration of sodium acetate in the reaction mixture. The sub-micrometer size nanoclusters consist of nanometric primary particles of 19 - 26.3 nm average size. The concentration of sodium acetate in reaction solution seen to control the final size of primary MNPs, and hence the size of sub-micrometric magnetite nanoclusters. All the samples revealed their superparamagnetic behavior with saturation magnetization ($M_s$) values in between 74.3 and 77.4 emu/g. $M_s$. The coercivity of the nanoclusters depends both on the size of the primary particles and impurity present in them. The mechanisms of formation and size control of the MNPs have been discussed.

Effect of Fe3O4 loading on the conductivities of carbon nanotube/chitosan composite films

  • Marroquin, Jason;Kim, H.J.;Jung, Dong-Ho;Rhee, Kyong-Yop
    • Carbon letters
    • /
    • 제13권2호
    • /
    • pp.126-129
    • /
    • 2012
  • Nanocomposite films were made by a simple solution casting method in which multi-walled carbon nanotubes (MWCNT) and magnetite nanoparticles ($Fe_3O_4$) were used as dopant materials to enhance the electrical conductivity of chitosan nanocomposite films. The films contained fixed CNT concentrations (5, 8, and 10 wt%) and varying $Fe_3O_4$ content. It was determined that a 1:1 ratio of CNT to $Fe_3O_4$ provided optimal conductivity according to dopant material loading. X-ray diffraction patterns for the nanocomposite films, were determined to investigate their chemical and phase composition, revealed that nanoparticle agglomeration occurred at high $Fe_3O_4$ loadings, which hindered the synergistic effect of the doping materials on the conductivity of the films.

Production of High-purity Magnetite Nanoparticles from a Low-grade Iron Ore via Solvent Extraction

  • Suh, Yong Jae;Do, Thi May;Kil, Dae Sup;Jang, Hee Dong;Cho, Kuk
    • Korean Chemical Engineering Research
    • /
    • 제53권1호
    • /
    • pp.39-45
    • /
    • 2015
  • We produced magnetite nanoparticles (MNPs) and a Mg-rich solution as a nano-adsorbent and a coagulant for water treatment, respectively, using a low-grade iron ore. The ore was leached with aqueous hydrochloric acid and its impurities were removed by solvent extraction of the leachate using tri-n-butyl phosphate as an extractant. The content of Si and Mg, which inhibit the formation of MNPs, was reduced from 10.3 wt% and 15.5 wt% to 28.1 mg/L and < 1.4 mg/L, respectively. Consequently, the Fe content increased from 68.6 wt% to 99.8 wt%. The high-purity $Fe^{3+}$ solution recovered was used to prepare 5-15-nm MNPs by coprecipitation. The wastewater produced contained a large amount of $Mg^{2+}$ and can be used to precipitate struvite in sewage treatment. This process helps reduce the cost of both sewage and iron-orewastewater treatments, as well as in the economic production of the nano-adsorbent.

Electron Spin Resonance (ESR) and Microwave Absorption Studies of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) for Hyperthermia Applications

  • Choi, Yong-Ho;Yi, Terry;Kim, Do-Kyung
    • 한국세라믹학회지
    • /
    • 제48권6호
    • /
    • pp.577-583
    • /
    • 2011
  • Stabilized biocompatible superparamagnetic iron oxide nanoparticles (SPIONs) were prepared by controlled coprecipitation method for hyperthermia application. ESR measurements determined that all of the interactions in the individual SPIONs (1 nm and 11 nm) were antiferromagnetic in nature because the ions contributed to the magnetization with a range of magnetic moments. In-situ monitoring of the temperature increment was performed, showing that the microwave absorption rate of the SPIONs was dispersed in an appropriate host media (polar or non-polar solvents) during microwave irradiation. Microwave absorption energy rates and heat loss of SPIONs in solvent were calculated by non-linear data fitting with an energy balance equation. The microwave absorption rates of SPIONs dispersed in solvent linearly increases when the concentration of SPIONs increases, implying that the microwave absorption rate can be tunable by changing the concentration of SPIONs.

PEG 스페이서를 통해 Homing 펩타이드를 고정화한 산화철 나노입자의 제조 및 생의학적 응용 (Synthesis of Homing Peptide-Immobilized Magnetite Nanoparticles through PEG Spacer and Their Biomedical Applications)

  • 이상민;싱즐차이;신용석;구태형;이병헌;허만우;강인규
    • 폴리머
    • /
    • 제36권5호
    • /
    • pp.586-592
    • /
    • 2012
  • 산화철($Fe_3O_4$은 세포에 의해 섭취된 후 대사반응에 의해 분비되므로 세포독성을 나타내지 않는다. 따라서 산화철 나노입자는 MRI 촬영을 하기에 앞서 조영제로서 널리 사용되고 있다. 본 연구에서는 통상의 공침법으로 산화철 나노입자를 합성하고 폴리에틸렌글리콜을 스페이서로 하여 혈관내피세포 및 방광암 세포막의 IL-4 리셉터에 특이적으로 반응하는 homing 펩타이드(AP)를 고정화하였다. AP를 고정화한 산화철 나노입자의 크기는 수용액 상에서 약 39 nm이었다. 섬유아세포 및 방광암세포를 이용하여 AP고정화 산화철 나노입자의 uptake를 조사한 결과 섬유아세포에는 선택적 uptake를 발견할 수 없었으나 방광암세포에는 선택적으로 uptake됨을 알 수 있었다. 따라서 AP 고정화 산화철 나노입자는 조기 암진단용 조영제로서 가능성을 지니고 있다고 할 수 있다.