• Title/Summary/Keyword: Magnetite ($Fe_3O_4$) NPs

Search Result 4, Processing Time 0.015 seconds

Immobilization of the Thenoyltrifluoroacetone on Sodium Dodecyl Sulfate Modified Magnetite Nanoparticles for Magnetic Solid Phase Extraction of Pb (II) from Water Samples

  • Sadeghi, Meysam;Yekta, Sina;Babanezhad, Esmaeil
    • Korean Chemical Engineering Research
    • /
    • v.54 no.5
    • /
    • pp.636-647
    • /
    • 2016
  • Magnetite nanoparticles ($Fe_3O_4$ NPs) were synthesized by co-precipitating method under optimized condition. The $Fe_3O_4$ NPs coated with sodium dodecyl sulfate-thenoyltrifluoroacetone ($Fe_3O_4$ NPs-SDS-TTFA) were then exerted as the magnetic solid phase extraction (MSPE) adsorbent for the extraction process prior to introducing to a flame atomic adsorption spectrometry (FAAS). The synthesized $Fe_3O_4$ NPs-SDS-TTFA were applied for the extraction of Pb(II) ions from different water samples. The characterization studies of nanoparticles were performed via scanning electron microscopy-energy dispersive micro-analysis (SEM-EDAX), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) techniques. The substantial parameters affecting the extraction efficiency were surveyed and optimized. A dynamic linear range (DLR) of $10-400{\mu}g\;L^{-1}$ was obtained and the limit of detection (LOD, n=7) and relative standard deviation (RSD%, n= 6, $C=20{\mu}g\;L^{-1}$) were found to be $2.3{\mu}g\;L^{-1}$ and 1.9%, respectively. According to the results, the proposed method successfully applied for the extraction of Pb(II) ions from different environmental water samples and satisfactory results achieved.

Effect of additives on the hydrothermal synthesis of manganese ferrite nanoparticles

  • Kurtinaitiene, Marija;Mazeika, Kestutis;Ramanavicius, Simonas;Pakstas, Vidas;Jagminas, Arunas
    • Advances in nano research
    • /
    • v.4 no.1
    • /
    • pp.1-14
    • /
    • 2016
  • Superparamagnetic iron oxide nanoparticles (Nps), composed of magnetite, $Fe_3O_4$, or maghemite, ${\gamma}-Fe_2O_3$, core and biocompatible polymer shell, such as dextran or chitozan, have recently found wide applications in magnetic resonance imaging, contrast enhancement and hyperthermia therapy. For different diagnostic and therapeutic applications, current attempt is focusing on the synthesis and biomedical applications of various ferrite Nps, such as $CoFe_2O_4$ and $MnFe_2O_4$, differing from iron oxide Nps in charge, surface chemistry and magnetic properties. This study is focused on the synthesis of manganese ferrite, $MnFe_2O_4$, Nps by most commonly used chemical way pursuing better control of their size, purity and magnetic properties. Co-precipitation syntheses were performed using aqueous alkaline solutions of Mn(II) and Fe(III) salts and NaOH within a wide pH range using various hydrothermal treatment regimes. Different additives, such as citric acid, cysteine, glicine, polyetylene glycol, triethanolamine, chitosan, etc., were tested on purpose to obtain good yield of pure phase and monodispersed Nps with average size of ${\leq}20nm$. Transmission electron microscopy (TEM), X-ray diffraction, energy dispersive X-ray spectroscopy (EDX), $M\ddot{o}ssbauer$ spectroscopy down to cryogenic temperatures, magnetic measurements and inductively coupled plasma mass spectrometry were employed in this study.

Effect of Non-ionic Igepal CO-520 in Sonochemical Synthesis of Monodisperse Fe3O4 Nanoparticles

  • Son, Vo Thanh;Phong, Le Van;Islam, Nazrul Md.;Hung, Tran Quang;Kim, Sa-Rah;Jeong, Jun-Ho;Kim, Cheol-Gi;Jeong, Jong-Ryul
    • Journal of Magnetics
    • /
    • v.15 no.3
    • /
    • pp.112-115
    • /
    • 2010
  • We have investigated a surfactant-assisted sonochemical approach to produce monodisperse $Fe_3O_4$ nanoparticles (NPs). The non-ionic surfactant Igepal CO-520 (Poly(oxyethylene)(5) nonylphenyl ether) has been used for the preparation of NPs and the effects on the NP size, size distribution, and magnetic properties have been studied. The $Fe_3O_4$ NPs were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and vibrating sample magnetometry (VSM). The results reveal that the NPs prepared by a Igepal CO-520-assisted sonochemical method exhibit a narrow range of size distributions and a high monodispersity compared to the NPs from the conventional sonochemical method. The analysis of NPs prepared in the presence of the surfactant suggested that it could be used not only as a protector to prevent the oxidation of Fe (II), but also as a controller to vary the size of the NPs.

Preparation of Novel Natural Polymer-based Magnetic Hydrogels Reinforced with Hyperbranched Polyglycerol (HPG) Responsible for Enhanced Mechanical Properties (과분지 폴리글리세롤(HPG) 강화를 통해 기계적 물성이 향상된 새로운 천연 고분자 기반 자성 하이드로젤의 제조)

  • Eun-Hye Jang;Jisu Jang;Sehyun Kwon;Jeon-Hyun Park;Yujeong Jeong;Sungwook Chung
    • Clean Technology
    • /
    • v.29 no.1
    • /
    • pp.10-21
    • /
    • 2023
  • Hydrogels that are made of natural polymer-based double networks have excellent biocompatibility, low cytotoxicity, and high water content, assuring that the material has the properties required for a variety of biomedical applications. However, hydrogels also have limitations due to their relatively weak mechanical properties. In this study, hydrogels based on an alginate di-aldehyde (ADA) and gelatin (Gel) double network that is reinforced with additional hydrogen bonds formed between the hydroxyl (-OH) groups of the hyperbranched polymer (HPG) and the functional groups present inside of the hydrogels were successfully synthesized. The enhanced mechanical properties of these synthesized hydrogels were evaluated by varying the amount of HPG added during the hydrogel synthesis from 0 to 25%. In addition, magnetite nanoparticles (Fe3O4 NPs) were synthesized within the hydrogels and the structures and the magnetic properties of the hydrogels were also characterized. The hydrogels that contained 15% HPG and Fe3O4 NPs exhibited superparamagnetic behaviors with a saturation magnetization value of 3.8 emu g-1. These particular hydrogels also had strengthened mechanical properties with a maximum compressive stress of 1.1 MPa at a strain of 67.4%. Magnetic hydrogels made with natural polymer-based double networks provide improved mechanical properties and have a significant potential for drug delivery and biomaterial application.