• Title/Summary/Keyword: Magnetic resonance imaging (MR)

Search Result 891, Processing Time 0.029 seconds

Syringo-Subarachnoid-Peritoneal Shunt Using T-Tube for Treatment of Post-Traumatic Syringomyelia

  • Kim, Seon-Hwan;Choi, Seung-Won;Youm, Jin-Young;Kwon, Hyon-Jo
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.1
    • /
    • pp.58-61
    • /
    • 2012
  • Various surgical procedures for the treatment of post-traumatic syringomyelia have been introduced recently, but most surgical strategies have been unreliable. We introduce the concept and technique of a new shunting procedure, syringo-subarachnoid-peritoneal shunt. A 54-year-old patient presented to our hospital with a progressive impairment of motion and position sense on the right side. Sixteen years before this admission, he had been treated by decompressive laminectomy for a burst fracture of L1. On his recent admission, magnetic resonance (MR) imaging studies of the whole spine revealed the presence of a huge syrinx extending from the medulla to the L1 vertebral level. We performed a syringo-subarachnoid-peritoneal shunt, including insertion of a T-tube into the syrinx, subarachnoid space and peritoneal cavity. Clinical manifestations and radiological findings improved after the operation. The syringo-subarachnoid-peritoneal shunt has several advantages. First, fluid can communicate freely between the syrinx, the subarachnoid space, and the peritoneal cavity. Secondly, we can prevent shunt catheter from migrating because dural anchoring of the T-tube is easy. Finally, we can perform shunt revision easily, because only one arm of the T-tube is inserted into the intraspinal syringx cavity. We think that this procedure is the most beneficial method among the various shunting procedures.

Hippocampus Segmentation and Classification in Alzheimer's Disease and Mild Cognitive Impairment Applied on MR Images

  • Madusanka, Nuwan;Choi, Yu Yong;Choi, Kyu Yeong;Lee, Kun Ho;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.205-215
    • /
    • 2017
  • The brain magnetic resonance images (MRI) is an important imaging biomarker in Alzheimer's disease (AD) as the cerebral atrophy has been shown to strongly associate with cognitive symptoms. The decrease of volume estimates in different structures of the medial temporal lobe related to memory correlates with the decline of cognitive functions in neurodegenerative diseases. During the past decades several methods have been developed for quantifying the disease related atrophy of hippocampus from MRI. Special effort has been dedicated to separate AD and mild cognitive impairment (MCI) related modifications from normal aging for the purpose of early detection and prediction. We trained a multi-class support vector machine (SVM) with probabilistic outputs on a sample (n = 58) of 20 normal controls (NC), 19 individuals with MCI, and 19 individuals with AD. The model was then applied to the cross-validation of same data set which no labels were known and the predictions. This study presents data on the association between MRI quantitative parameters of hippocampus and its quantitative structural changes examination use on the classification of the diseases.

Gadolinium Complex of 1,4,7,10-Tetraazacyclododecane-N,N',N'',N'''-1,4,7-trisacetic Acid (DO3A) Conjugate of Tranexamates: A Quest for a Liver-specific Magnetic Resonance Imaging Contrast Agent

  • Nam, Ki-Soo;Jeong, Hyun-Jeong;Kim, Hee-Kyung;Choi, Garam;Suh, Kyung-Jin;Chang, Yongmin;Kim, Tae-Jeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.87-92
    • /
    • 2014
  • The work is directed toward the synthesis of a series of DO3A conjugates of tranexamates (1c-e) and their Gd complexes (2c-e) for use as a liver-specific MRI CA. All these complexes show thermodynamic and kinetic stabilities comparable to those of structurally related clinical agents such as Dotarem$^{(R)}$. Their $R_1$ relaxivities also compare well with those of commercial agent, ranging 3.68-4.84 $mM^{-1}s^{-1}$. In vivo MR images of mice with 2a-e reveal that only 2a exhibits liver-specificity. Although 2b and 2c show strong enhancement in liver, yet no bile-excretion is observed to be termed as a liver-specific agent. The rest behaves much like ordinary ECF CAs like Dotarem$^{(R)}$. The new series possess no toxicity to be employed in vivo.

Nuclear Medicine Physics: Review of Advanced Technology

  • Oh, Jungsu S.
    • Progress in Medical Physics
    • /
    • v.31 no.3
    • /
    • pp.81-98
    • /
    • 2020
  • This review aims to provide a brief, comprehensive overview of advanced technologies of nuclear medicine physics, with a focus on recent developments from both hardware and software perspectives. Developments in image acquisition/reconstruction, especially the time-of-flight and point spread function, have potential advantages in the image signal-to-noise ratio and spatial resolution. Modern detector materials and devices (including lutetium oxyorthosilicate, cadmium zinc tellurium, and silicon photomultiplier) as well as modern nuclear medicine imaging systems (including positron emission tomography [PET]/computerized tomography [CT], whole-body PET, PET/magnetic resonance [MR], and digital PET) enable not only high-quality digital image acquisition, but also subsequent image processing, including image reconstruction and post-reconstruction methods. Moreover, theranostics in nuclear medicine extend the usefulness of nuclear medicine physics far more than quantitative image-based diagnosis, playing a key role in personalized/precision medicine by raising the importance of internal radiation dosimetry in nuclear medicine. Now that deep-learning-based image processing can be incorporated in nuclear medicine image acquisition/processing, the aforementioned fields of nuclear medicine physics face the new era of Industry 4.0. Ongoing technological developments in nuclear medicine physics are leading to enhanced image quality and decreased radiation exposure as well as quantitative and personalized healthcare.

MR-Guided Targeted Prostate Biopsy from Radiologists' Perspective (영상의학과 의사의 시각에서 본 자기공명영상 기반 전립선 표적 생검)

  • So-Yeon Kim;Kye Jin Park
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.6
    • /
    • pp.1220-1232
    • /
    • 2023
  • The prostate cancer diagnosis has traditionally been based on a systematic biopsy method in which tissue samples are randomly obtained from the prostate 10-12 sites. However, there are concerns as the method can fail to diagnose all prostate cancers or lead to over-detection of clinically insignificant cancers. MRI-guided prostate targeted biopsy has been proposed to address these shortcomings. This method involves identifying suspicious lesions using MRI and performing targeted biopsies under ultrasound or MRI guidance. We review the methods of MRI-based targeted biopsy and discuss recent guidelines and trends in prostate cancer diagnosis.

Flow Effects on Tailored RF Gradient Echo (TRFGE) Magnetic Resonance Imaging : In-flow and In-Plane Flow Effect (Tailored RF 경자사계방향 (TRFGE} 자기공명영상(MRI)에서 유체에 의한 영상신호 변화 : 유체유입효과와 영상면내를 흐르는 유체의 효과에 대하여)

  • Mun, Chi-Ung;Kim, Sang-Tae;No, Yong-Man;Im, Tae-Hwan;Jo, Jang-Hui
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.243-251
    • /
    • 1997
  • In this paper, we have reported two interesting flow effects arising in the TRFGE sequence using water flow phantom. First, we have shown that the TRFGE sequence is indeed not affected by "in-flow" effect from the unsaturated spins flowing into the imaging slice. Second, the enhancement of "in-plane flow" signal in the readout gradient direction was observed when the TRFGE sequence was used without flow compensation. These two results have many interesting applications in MR imaging other than fMRI. Results obtained were also compared with the results obtained by the conventional gradient echo(CGE) imaging. Experiments were performed at 4.7T MRI/S animal system (Biospec, BRUKER, Switzerland). A cylindrical phantom was made using acryl and a vinyl tube was inserted at the center(Fig. 1). The whole cylinder was filled with water doped with $MnCl_2$ and the center tube was filled with saline which flows in parallel to the main magnetic field along the tube. Tailored RF pulse was designed to have quadratic ($z^2$) phase distribution in slice direction(z). Imaging parameters were TR/TE = 55~85/10msec, flip angle = $30^{\circ}$, slice thickness = 2mm, matrix size = 256${\times}$256, and FOV= 10cm. In-flow effect : Axial images were obtained with and without flow using the CGE and TRFGE sequences, respectively. The flow direction was perpendicular to the image slice. In-plane flow : Sagittal images were obtained with and without flow using the TRGE sequence. The readout gradient was applied in parallel to the flow direction. We have observed that the "in-flow" effect did not affect the TRFGE image, while "in-plane flow" running along the readout gradient direction enhanced the signal in the TRFGE sequence when flow compensation gradient scheme was not used.

  • PDF

Reconstruction of Stereo MR Angiography Optimized to View Position and Distance using MIP (최대강도투사를 이용한 관찰 위치와 거리에 최적화 된 입체 자기공명 뇌 혈관영상 재구성)

  • Shin, Seok-Hyun;Hwang, Do-Sik
    • Investigative Magnetic Resonance Imaging
    • /
    • v.16 no.1
    • /
    • pp.67-75
    • /
    • 2012
  • Purpose : We studied enhanced method to view the vessels in the brain using Magnetic Resonance Angiography (MRA). Noticing that Maximum Intensity Projection (MIP) image is often used to evaluate the arteries of the neck and brain, we propose a new method for view brain vessels to stereo image in 3D space with more superior and more correct compared with conventional method. Materials and Methods: We use 3T Siemens Tim Trio MRI scanner with 4 channel head coil and get a 3D MRA brain data by fixing volunteers head and radiating Phase Contrast pulse sequence. MRA brain data is 3D rotated according to the view angle of each eyes. Optimal view angle (projection angle) is determined by the distance between eye and center of the data. Newly acquired MRA data are projected along with the projection line and display only the highest values. Each left and right view MIP image is integrated through anaglyph imaging method and optimal stereoscopic MIP image is acquired. Results: Result image shows that proposed method let enable to view MIP image at any direction of MRA data that is impossible to the conventional method. Moreover, considering disparity and distance from viewer to center of MRA data at spherical coordinates, we can get more realistic stereo image. In conclusion, we can get optimal stereoscopic images according to the position that viewers want to see and distance between viewer and MRA data. Conclusion: Proposed method overcome problems of conventional method that shows only specific projected image (z-axis projection) and give optimal depth information by converting mono MIP image to stereoscopic image considering viewers position. And can display any view of MRA data at spherical coordinates. If the optimization algorithm and parallel processing is applied, it may give useful medical information for diagnosis and treatment planning in real-time.

Gradient Noise Reduction in EEG Acquired During MRI Scan (MRI와 동시 측정한 뇌전도 신호에서 경사자계 유발잡음의 제거)

  • Lee H.R.;Lee H.N.;Han J.Y.;Park T.S.;Lee S.Y.
    • Investigative Magnetic Resonance Imaging
    • /
    • v.8 no.1
    • /
    • pp.1-8
    • /
    • 2004
  • Purpose : Information about electrical activity inside the brain during fMRl scans is very useful in monitoring physiological function of the patient or locating the spatial position of the activated region in the brain. However, many additional noises appear in the EEG signal acquired during the MRI scan. Gradient induced noise is the biggest one among the noises. In this work, we propose a gradient noise reduction method using the independent component analysis (ICA) method. Materials and Methods : We used a 29-channel MR-compatible EEG measurement system and a 3.0 Tesla MRI system. We measured EEG signals on a subject lying inside the magnet during EPI scans. We selectively removed the gradient noise from the measured EEG signal using the ICA method. We compared the results with the ones obtained with conventional averaging method and PCA method. Results : All the noise reduction methods including the averaging and PCA methods were effective in removing the noise in some extent. However, the proposed ICA method was found to be superior to the other methods. Conclusion : Gradient noise in EEG signals acquired during fMRI scans can be effectively reduced by the ICA method. The noise-reduced EEG signal can be used in fMRI studies of epileptic patients or combinatory studies of fMRI and EEG.

  • PDF

Improvement of Fat Suppression and Artifact Reduction Using IDEAL Technique in Head and Neck MRI at 3T

  • Hong, Jin Ho;Lee, Ha Young;Kang, Young Hye;Lim, Myung Kwan;Kim, Yeo Ju;Cho, Soon Gu;Kim, Mi Young
    • Investigative Magnetic Resonance Imaging
    • /
    • v.20 no.1
    • /
    • pp.44-52
    • /
    • 2016
  • Purpose: To quantitatively and qualitatively compare fat-suppressed MRI quality using iterative decomposition of water and fat with echo asymmetry and least-squares estimation (IDEAL) with that using frequency selective fat-suppression (FSFS) T2- and postcontrast T1-weighted fast spin-echo images of the head and neck at 3T. Materials and Methods: The study was approved by our Institutional Review Board. Prospective MR image analysis was performed in 36 individuals at a single-center. Axial fat suppressed T2- and postcontrast T1-weighted images with IDEAL and FSFS were compared. Visual assessment was performed by two independent readers with respect to; 1) metallic artifacts around oral cavity, 2) susceptibility artifacts around upper airway, paranasal sinus, and head-neck junction, 3) homogeneity of fat suppression, 4) image sharpness, 5) tissue contrast of pathologies and lymph nodes. The signal-to-noise ratios (SNR) for each image sequence were assessed. Results: Both IDEAL fat suppressed T2- and T1-weighted images significantly reduced artifacts around airway, paranasal sinus, and head-neck junction, and significantly improved homogeneous fat suppression in compared to those using FSFS (P < 0.05 for all). IDEAL significantly decreased artifacts around oral cavity on T2-weighted images (P < 0.05, respectively) and improved sharpness, lesion-to-tissue, and lymph node-to-tissue contrast on T1-weighted images (P < 0.05 for all). The mean SNRs were significantly improved on both T1- and T2-weighted IDEAL images (P < 0.05 for all). Conclusion: IDEAL technique improves image quality in the head and neck by reducing artifacts with homogeneous fat suppression, while maintaining a high SNR.

Influence of Iodinated Contrast Media and Paramagnetic Contrast Media on Changes in Uptake Counts of 99mTc

  • Cho, Jae-Hwan;Lee, Jin-Hyeok;Park, Cheol-Soo;Lee, Sun-Yeob;Lee, Jin;Moon, Deog-Hwan;Lee, Hae-Kag
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.248-254
    • /
    • 2014
  • The purpose of this study is to figure out how uptake counts of technetium ($^{99m}Tc$) among radioisotopes in the human body are affected if computed tomography (CT), magnetic resonance imaging (MRI) and isotope examination are performed consecutively. $^{99m}Tc$ isotope material, iodinated contrast media for CT and paramagnetic contrast media for magnetic resonance (MR) were used as experimental materials. First, $^{99m}Tc$ was added to 4 cc normal saline in a test tube. Then, 2 cc of CT contrast media such as $Iopamidol^{(R)}$ and $Dotarem^{(R)}$ were diluted with 2 cc normal saline, and 2cc of MRI contrast media such as $Primovist^{(R)}$ and $Gadovist^{(R)}$ were diluted with 2 cc normal saline. Each distributed contrast media was a total of 4 cc and included 10m Ci of $^{99m}Tc$. A gamma camera, a LEHR (Low energy high resolution) collimator and a pin-hole collimator were used for image acquisition. Image acquisition was repeated a total of 6 times and 120 frames were obtained and uptake counts of $^{99m}Tc$ were measured (from this procedure). In this study, as a result of measuring the uptake counts of $^{99m}Tc$ using the LEHR collimator, the uptake counts were less measured in all contrast media than normal saline as a reference. In particular, the lowest uptake counts were measured when $Gadovist^{(R)}$, contrast media for MRI, was used. However, the result of measuring the uptake counts of $^{99m}Tc$ using the pin-hole collimator showed higher uptake counts in all contrast media, except for $Iopamidol^{(R)}$, than normal saline as a reference. The highest uptake counts were measured particularly when $Primovist^{(R)}$, contrast media for MRI, was used. In performing the gamma camera examination using contrast media and $^{99m}Tc$, it is considered significant to check the changes in the uptake counts to improve various diagnosis values.