• Title/Summary/Keyword: Magnetic resonance frequency analysis

Search Result 81, Processing Time 0.026 seconds

Analysis of Magnetic Permeability Spectra of Metamaterials Composed of Cut Wire Pairs by Circuit Theory

  • Lim, Jun-Hee;Kim, Sung-Soo
    • Journal of Magnetics
    • /
    • v.21 no.2
    • /
    • pp.187-191
    • /
    • 2016
  • Retrieving the equivalent electromagnetic parameters (permittivity and permeability) plays an important role in the research and application of metamaterials. Frequency dispersion of magnetic permeability has been theoretically predicted in a metamaterial composed of cut wire pairs (CWP) separated by dielectric substrate on the basis of circuit theory. Magnetic resonance resulting from antiparallel currents between the CWP is observed at the frequency of minimum reflection loss (corresponding to absorption peak) and effective resonator size can be determined. Having calculated the circuit parameters (inductance L, capacitance C) and resonance frequency from CWP dimension, the frequency dispersion of permeability of Lorentz like magnetic response can be predicted. The simulated resonance frequency and permeability spectra can be explained well on the basis of the circuit theory of an RLC resonator.

Analysis of the Efficiency According to Resonant Repeater Application in Magnetic Resonant Wireless Power Transfer System (자기공진방식의 무선전력전송 시스템에서 공진 중계기 적용 여부에 따른 전력전송 효율 분석)

  • Baek, Seung-Myung;Kim, Dong-Eun;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.4
    • /
    • pp.221-226
    • /
    • 2018
  • In this paper, the power transfer efficiency analysis based on the resonant repeater in a magnetic resonance wireless power transfer system is proposed. The efficiency of the magnetic resonance method was verified by comparing the general frequency with the resonance frequency. The resonance repeater was arranged to increase the efficiency and increase the transfer distance. When using resonant repeaters, the maximum efficiency increase is about 36.23[%] and the transfer distance was extended to more than 20[cm]. Through this study, confirmed the effect of using resonance repeaters in wireless power transfer system. As a result, it can be expected that the overall technology related to wireless power transfer system will be more valuable for energy-IT technology.

Fault Current Waveform Analysis of a Flux-Lock Type SFCL According to LC Resonance Condition of Third Winding

  • Lim, Sung-Hun
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.213-217
    • /
    • 2008
  • The flux-lock type superconducting fault current limiter(SFCL) can apply the magnetic field into the high-$T_C$ superconducting(HTSC) element by adopting the magnetic field coil in its third winding. To apply the magnetic field into the HTSC element effectively, the capacitor for LC resonance is connected in series with the magnetic field coil. However, the current waveform of third winding for the application of the magnetic field is affected by the LC resonance condition for the frequency of the source voltage and can affect the waveform of the limited fault current. In this paper, the current waveform of the third winding in the flux-lock type SFCL according to LC resonance condition during a fault period was analyzed. From the differential equation for its electrical circuit, the current equation of the third winding was derived and described with the natural frequency and the damping ratio as design parameters. Through the analysis according to the design parameters of the third winding, the waveform of the limited fault current was confirmed to be influenced by the current waveform of the third winding and the design condition for the stable fault current limiting operation of this SFCL was obtained.

FeCoB Films with Large Saturation Magnetization and High Magnetic Anisotropy Field to Attain High Ferromagnetic Resonance Frequency

  • Nakagawa, Shigeki;Hirata, Ken-Ichiro
    • Journal of Magnetics
    • /
    • v.18 no.2
    • /
    • pp.155-158
    • /
    • 2013
  • FeCoB films were being prepared on a Ru underlayer by using the oblique incidence of sputtered and back-scattered particles which have a high in-plane magnetic anisotropy field $H_k$ above 400 Oe. It is suitable to attain such deposition condition when facing targets sputtering system. The in-plane X-ray diffraction analysis clarified that there is anisotropic residual stress which is the origin of the high in-plane magnetic anisotropy. The directional crystalline alignment and inclination of crystallite growth were also observed. Such anisotropic crystalline structures may affect the anisotropic residual stress in the films. The B content of 5.6 at.% was appropriate to induce such anisotropic residual stress and $H_k$ of 410 Oe in this experiment. The film with B content of 6 at.% possessed large saturation magnetization of 22 kG and high $H_k$ of 500 Oe. The film exhibited high ferromagnetic resonance frequency of 9.2 GHz.

Frequency-Domain Circuit Model and Analysis of Coupled Magnetic Resonance Systems

  • Huh, Jin;Lee, Wooyoung;Choi, Suyong;Cho, Gyuhyeong;Rim, Chuntaek
    • Journal of Power Electronics
    • /
    • v.13 no.2
    • /
    • pp.275-286
    • /
    • 2013
  • An explicit frequency-domain circuit model for the conventional coupled magnetic resonance system (CMRS) is newly proposed in this paper. Detail circuit parameters such as the leakage inductances, magnetizing inductances, turn-ratios, internal coil resistances, and source/load resistances are explicitly included in the model. Accurate overall system efficiency, DC gain, and key design parameters are deduced from the model in closed form equations, which were not available in previous works. It has been found that the CMRS can be simply described by an equivalent voltage source, resistances, and ideal transformers when it is resonated to a specified frequency in the steady state. It has been identified that the voltage gain of the CMRS was saturated to a specific value although the source side or the load side coils were strongly coupled. The phase differences between adjacent coils were ${\pi}/2$, which should be considered for the EMF cancellations. The analysis results were verified by simulations and experiments. A detailed circuit-parameter-based model was verified by experiments for 500 kHz by using a new experimental kit with a class-E inverter. The experiments showed a transfer of 1.38 W and a 40 % coil to coil efficiency.

Analysis of Magnetic Resonance Characteristics and Images of Korean Red Ginseng (홍삼의 자기공명 특성과 영상 분석)

  • 김성민;임종국
    • Journal of Biosystems Engineering
    • /
    • v.28 no.3
    • /
    • pp.253-260
    • /
    • 2003
  • In this study, the feasibility of magnetic resonance techniques for nondestructive internal quality evaluation of Korean red ginseng was examined. Relaxation time constants were measured using various grades of red ginsengs. Solid state magnetic resonance imaging technique was applied to image dried red ginsengs which have low moisture contents (about 13%). A 7 tesla magnetic resonance imaging system operating at a proton resonant frequency of 300 ㎒ was used for acquiring MR images of dried Korean red ginseng. The comparison test of cross cut digital images and magnetic resonance images of heaven grade, good grade with cavity inside, and good grade with white part inside red ginseng suggested the feasibility of the internal quality evaluation of Korean red ginsengs using MRI techniques. A good grade red ginseng included abnormal tissues such as cavities or white parts inside was observed by the signal intensity of MR image based on magnetic resonance properties of proton nucleus. Analysis on an one dimensional profile of acquired MR image of Korean red ginseng showed easy discrimination of normal and abnormal tissues. MR techniques suggested ways to detect internal defects of red ginsengs effectively.

Analysis of Signal-to-Noise Ratio in High Field Multi-dimensional Magnetic Resonance Imaging (고자장 다차원 자기공명영상에서 신호대잡음비 분석)

  • Ahn, C.B.;Kim, H.J.;Chang, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2783-2785
    • /
    • 2003
  • In multi-dimensional magnetic resonance imaging, data is obtained in the spatial frequency domain. Since the signal variation in the spatial frequency domain is much larger than that in the spatial domain, analog-to-digital converts with wide conversion bits are required. In this paper, the quantization noise in magnetic resonance imaging is analyzed. The signal-to-quantization noise ratio(SQNR) in the reconstructed image is derived from the level of quantization in the data acquisition. Since the quantization noise is proportional to the signal amplitude, it becomes more dominant in high field imaging. Using the derived formula the SQNR for several MRI systems are evaluated, and it is shown that the quantization noise can be a limiting factor in high field imaging, especially in three dimensional imaging in magnetic resonance imaging.

  • PDF

Application of Magnetic Resonance Thermometry (MRT) on Fully Developed Turbulent Pipe Flow using 3T and 7T MRI (완전발달 난류 원관 유동에서의 3T 및 7T MRI를 이용한 자기공명온도계의 적용)

  • You, Hyung Woo;Baek, Seungchan;Kim, Dong-Hyun;Lee, Whal;Oh, Sukhoon;Hwang, Wontae
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.1
    • /
    • pp.26-37
    • /
    • 2020
  • Magnetic resonance thermometry (MRT) is a technique capable of measuring three-dimensional mean temperature fields by utilizing temperature-dependent shifts in proton resonance frequency. In this study, experimental verification of the technique is obtained by measuring 3D temperature fields within fully developed turbulent pipe flow, using 3T and 7T MRI scanners. The effect of the proton resonance frequency (PRF) thermal constant is examined in detail.

A Study on the Wireless Power Transfer System using Magnetic Resonance at the 1[MHz] Frequency Band (1[MHz] 대역의 자계 공명을 이용한 무선 전력 전송 장치에 관한 연구)

  • Park, Jeong-Heum
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.1
    • /
    • pp.75-81
    • /
    • 2012
  • In this paper, the wireless power transfer system using the magnetic resonance was designed, analyzed by circuit analysis methode and the calculated transfer function was compared with the measured one. The self-resonant coil was made up of the commonly used capacitor which had the lumped capacitance and it enabled the stable magnetic resonance not to be affected by the circumstance. The transmission efficiency of this system was 70[%] at the 15[cm] between the transmission and receiving coil and the measured transfer function was similar to the calculated one, which means the circuit analysis methode is valid in this system. When the intermediate coils were added between the transmission and receiving coil, the transmission efficiency was increased, which produced the increase of transfer distance. In the case of the five intermediate coils adding, the 35[%] transmission efficiency was achived at the 90[cm] distance.

The Property Analysis of Ceramic Metal-Halide Lamp Considering Acoustic Resonance Phenomenon and Design of Inverter by the PSpice Simulation (음향 공명 현상을 고려한 세라믹 메탈핼라이드의 특성 분석과 PSpice 시뮬레이션을 통한 인버터 설계)

  • Jang, Hyeok-Jin;Kim, Nam-Goon;Yang, Jong-Kyung;Lee, Jong-Chan;Park, Dae-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1989-1994
    • /
    • 2009
  • This study purposes are improvement of system (lamp & ballast) efficacy with and optical characteristics through the developed ceramic arc tube. The designed electronic ballast is substituted for conventional magnetic ballast. These electric signal and optical, thermal characteristics through the improving efficacy of lighting system compared with conventional magnetic ballast. properties of lamp by driving method is researching in ballast. Particularly, electronic ballasts, which improved against weakness of Magnetic Ballast, are researching and applying to control of ceramic metal-halide lamp. but One major limitation is the acoustic resonance problem in CMH lamps at high-frequency operation. In order to avoid acoustic resonance, driving frequency decided 21[kHz]. Before discharge in this paper. The PSpice simulation result obtained sufficient voltage gain and the ignition voltage obtained over 3[kV] at 75[kHz]. After discharge, driving voltage obtained approximately 90[Vrms] at 21[kHz].