• Title/Summary/Keyword: Magnetic relaxation

Search Result 275, Processing Time 0.03 seconds

Reflection of electro-magneto-thermoelastic plane waves in a rotating medium in context of three theories with two-temperature

  • Abo-Dahab, S.M.;Othman, Mohamed I.A.;Alsebaey, Ohoud N.S.
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.23-30
    • /
    • 2021
  • In this paper, we established the generalized thermoelasticity phenomenon in an isotropic elastic medium considering the electromagnetic field, rotation and two-temperature. Three theories of generalized thermoelasticity have been applied: Lord-Shulman (one relaxation time), Green-Lindsay (two relaxation times), as well as the coupled theory. We discussed some particular cases in the context of the wave propagation phenomenon in thermoelasticity. From solving the fundamental equations, we arrived that there are three waves: P-, T- and SV-waves that we calculated their velocities. The boundary conditions for mechanical stress and Maxwell's stress and thermal insulated or isothermal have been applied to determine the amplitudes ratios (reflection coefficients) for P-, T - and SV waves. Some utilitarian aspects are obtained from the reflection coefficients, presented graphically, and the new conclusions have been presented. Comparisons are made for the results predicted by different theories (CT, LS, GL) in the absence and presence of the electro-magnetic field, rotation, as well as two-temperature on the reflection of generalized thermoelastic waves. The results obtained concluded that the external parameters as the angle of incidence, electromagnetic field, rotation as well as the theories parameters have strong effect on the phenomenon.

Numerical analysis about current non-uniformity in superconducting CICC (cable-in-conduit conductor) joint (초전도 관내연선도체 접합부에서의 전류 불균일에 대한 수치적 분석)

  • Lee, Sang-Il;Jeong, Sang-Kwon;Choi, Sung-Min;Park, Kap-Rai
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.3
    • /
    • pp.41-45
    • /
    • 2007
  • This paper presents transport current non-uniformity in a joint for superconducting multistage cable-in-conduit conductor (CICC) and relaxation in the CICC. The joint is considered to have a current loop linked to an external magnetic field so that it becomes an emf voltage source. It is numerically analyzed using an electrical transmission line model. The inductive current in a resistive joint is compared to that of a non-resistive joint when the ramping field is applied vertically to the joints. Regarding the parameter values of the model. a full scale $Nb_3Sn$ CICC and a strand-to-strand (STS) joint for the toroidal field magnet of the KSTAR (Korea Superconducting Tokamak Advanced Research) device are referenced to. It is found that the resistive joint prevents the current from rising too much and enhances decaying the current when the ramping stops. The 'flattop' current is found to be proportional to the ramp rate of the field (dB/dt). The relaxation length, which is defined as the length within which the maximum induced current falls by 1/e. is found to saturate within 0.27m.

$^{13}C$ Nuclear Magnetic Resonance Study of Graphite Intercalated Superconductor $CaC_6$ Crystals in the Normal State ($CaC_6$ 결정에 대한 정상상태에서의 $^{13}C$ 핵자기공명 측정)

  • Kim, Sung-Hoon;Kang, Ki-Hyeok;Mean, B.J.;Ndiaye, B.;Lee, Moo-Hee;Kim, Jun-Sung
    • Progress in Superconductivity
    • /
    • v.12 no.1
    • /
    • pp.51-56
    • /
    • 2010
  • $^{13}C$ NMR (nuclear magnetic resonance) measurements have been performed to investigate the local electronic structure of a superconducting graphite intercalation compound $CaC_6$ ($T_c$ = 11.4 K). A large number of single crystals were stacked and sealed in a quartz tube for naturally abundant $^{13}C$ NMR. The spectrum, Knight shift, linewidth, and spin-lattice relaxation time $T_1$ were measured in the normal state as a function of temperature down to 80 K at 8.0 T perpendicular to the c-axis. The $^{13}C$ NMR spectrum shows a single narrow peak with a very small Knight shift. The Knight shift and the linewidth of the $^{13}C$ NMR are temperature-independent around, respectively, +0.012% and 1.2 kHz. The spin-lattice relaxation rate, $1/T_1$, is proportional to temperature confirming a Korringa behavior as for non-magnetic metals. The Korringa product is measured to be $T_1T\;=\;210\;s{\cdot}K$. From this value, the Korringa ratio is deduced to be $\xi$ = 0.73, close to unity, which suggests that the independent-electron description works well for $CaC_6$, without complications arising from correlation and many-body effects.

Mechanical Behavior of the Soleus Aponeuroses during Voluntary Contraction Using Magnetic Resonance Imaging Technique (자기공명 영상기법을 이용한 인체 가자미근 건막의 기계학적 특성 연구)

  • Lee, Hae-Dong
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.121-127
    • /
    • 2007
  • Muscle force produced by muscle fibers is transmitted to bones via tendinous structures(aponeuroses and tendon), resulting in joint(s) movement. As force-transmitting elements, mechanical behavior of aponeuroses and tendon are closely related with the function of muscle-tendon complex. The purpose of this study was to determine strain characteristics of aponeuroses for in-vivo human soleus muscle during submaximal voluntary contractions using an advanced medical imaging technique, velocity-encoded phase-contrast magnetic resonance imaging (VE-PC MRI). VE-PC MRI of the soleus muscle-tendon complex was acquired during submaximal isometric plantarflexion contraction-relaxation cycle (n = 7), using 3.0T Trio MRI scanner(Siemens AG, Malvern, MA). From the VE-PC MRI containing the tissue velocity in superior-inferior direction, twenty regions of interest(20 ROI; 10 on the anterior aponeurosis and 10 on the posterior aponeurosis) were tracked. During the isometric plantarflexion contraction-relaxation cycle, velocity and displacement profiles were different between the anterior and posterior aponeuroses, indicating heterogeneous strain behavior along the length of the leg. The anterior aponeurosis elongated while the posterior aponeurosis shortened during the initial phase of the contraction. Moreover, strain behavior of the posterior aponeurosis was different from that of the Achilles tendon. Possible explanation for the observed variations in strain behavior of aponeuroses was investigated with morphological assessment of the soleus muscle and it was found that the intramuscular tendinous structures significantly vary among subjects. In conclusion, the heterogeneous mechanical behavior of the soleus aponeuroses and the Achilles tendon suggests that the complexity of skeletal muscle-tendon complex should be taken into consideration when modeling the complex for better understanding of its functions.

Ultrashort Echo Time MRI (UTE-MRI) Quantifications of Cortical Bone Varied Significantly at Body Temperature Compared with Room Temperature

  • Jerban, Saeed;Szeverenyi, Nikolaus;Ma, Yajun;Guo, Tan;Namiranian, Behnam;To, Sarah;Jang, Hyungseok;Chang, Eric Y.;Du, Jiang
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.3
    • /
    • pp.202-209
    • /
    • 2019
  • Purpose: To investigate the temperature-based differences of cortical bone ultrashort echo time MRI (UTE-MRI) biomarkers between body and room temperatures. Investigations of ex vivo UTE-MRI techniques were performed mostly at room temperature however, it is noted that the MRI properties of cortical bone may differ in vivo due to the higher temperature which exists as a condition in the live body. Materials and Methods: Cortical bone specimens from fourteen donors ($63{\pm}21$ years old, 6 females and 8 males) were scanned on a 3T clinical scanner at body and room temperatures to perform T1, $T2^*$, inversion recovery UTE (IR-UTE) $T2^*$ measurements, and two-pool magnetization transfer (MT) modeling. Results: Single-component $T2^*$, $IR-T2^*$, short and long component $T2^*s$ from bi-component analysis, and T1 showed significantly higher values while the noted macromolecular fraction (MMF) from MT modeling showed significantly lower values at body temperature, as compared with room temperature. However, it is noted that the short component fraction (Frac1) showed higher values at body temperature. Conclusion: This study highlights the need for careful consideration of the temperature effects on MRI measurements, before extending a conclusion from ex vivo studies on cortical bone specimens to clinical in vivo studies. It is noted that the increased relaxation times at higher temperature was most likely due to an increased molecular motion. The T1 increase for the studied human bone specimens was noted as being significantly higher than the previously reported values for bovine cortical bone. The prevailing discipline notes that the increased relaxation times of the bound water likely resulted in a lower signal loss during data acquisition, which led to the incidence of a higher Frac1 at body temperature.

Muscle Functional MRI of Exercise-Induced Rotator Cuff Muscles

  • Tawara, Noriyuki;Nishiyama, Atsushi
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • The aim of this study was to provide a new assessment of rotator cuff muscle activity. Eight male subjects (24.7 ± 3.2 years old,171.2 ± 9.8 cm tall, and weighing 63.8 ± 11.9 kg) performed the study exercises. The subjects performed 10 sets of the exercise while fixing the elbow at 90 degrees flexure and lying supine on a bed. One exercise set consisted of the subject performing external shoulder rotation 50 times using training equipment. Two imaging protocols were employed: (a) true fast imaging with steady precession (TrueFISP) at an acquisition time of 12 seconds and (b) multi-shot spin-echo echo-planar imaging (MSSE-EPI) at an acquisition time of 30 seconds for one echo. The main method of assessing rotator cuff muscle activity was functional T2 mapping using ultrafast imaging (fast-acquired muscle functional MRI [fast-mfMRI]). Fast-mfMRI enabled real-time imaging for the identification and evaluation of the degree of muscle activity induced by the exercise. Regions of interest were set at several places in the musculus subscapularis (sub), musculus supraspinatus (sup), musculus teres minor (ter), and deltoid muscle (del). We used the MR signal of the images and transverse relaxation time (T2) for comparison. Most of the TrueFISP signal was not changed by exercise and there was no significant difference from the resting values. Only the T2 in the musculus teres minor was increased after one set and the change were seen on the T2 images. Additionally, except for those after one and two sets, the changes in T2 were significant compared to those at rest (P < 0.01). We also demonstrated identify and visualize the extent to which muscles involved in muscle activity by exercise. In addition, we showed that muscle activity in a region such as a shoulder, which is susceptible to B0 inhomogeneity, could be easily detected using this technique.

Fractional magneto-thermoelastic materials with phase-lag Green-Naghdi theories

  • Ezzat, M.A.;El-Bary, A.A.
    • Steel and Composite Structures
    • /
    • v.24 no.3
    • /
    • pp.297-307
    • /
    • 2017
  • A unified mathematical model of phase-lag Green-Naghdi magneto-thermoelasticty theories based on fractional derivative heat transfer for perfectly conducting media in the presence of a constant magnetic field is given. The GN theories as well as the theories of coupled and of generalized magneto-thermoelasticity with thermal relaxation follow as limit cases. The resulting nondimensional coupled equations together with the Laplace transforms techniques are applied to a half space, which is assumed to be traction free and subjected to a thermal shock that is a function of time. The inverse transforms are obtained by using a numerical method based on Fourier expansion techniques. The predictions of the theory are discussed and compared with those for the generalized theory of magneto-thermoelasticity with one relaxation time. The effects of Alfven velocity and the fractional order parameter on copper-like material are discussed in different types of GN theories.

Magnetic relaxation measurement of infinite layer superconductor Sr$_{0.9}$La$_{0.1}$CuO$_2$

  • Kim, Heon-Jung;Kim, Mun-Seog;Cung, C.U.;Kim, Ji-Yeon;Lee, Sung-Ik
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.121-124
    • /
    • 2000
  • The time dependence of irreversible magnetization of grain aligned infinite layer superconductor Sr$_{0.9}$La$_{0.1}$CuO$_2$ was measured in temperature range of 2 K < T < 30 K for H= 0.5 T, 1.0 T and 1.5 T parallel to c-axis. From this, we calculated normalized flux creep rate S(T) ${\equiv}$ dlnM/dlnt and found that the temperature independent region in S(T) is significantly wide in comparision with other cuprate superconductors. Using the method of Maley et al., we also deduce the current density dependence of pinning potential and glassy exponent ${\mu}$.

  • PDF

Spectroscopy of Intracellularly Located $%{133}Cs$ Has Been Used to Monitor the Uptake of the Isolated Rat Liver

  • Park Byung-Rae
    • Biomedical Science Letters
    • /
    • v.11 no.3
    • /
    • pp.301-305
    • /
    • 2005
  • MR spectroscopy of intracellularly located $^{133}Cs$ has been used to monitor the uptake of Gd-EOB-DTPA by the isolated rat liver. As shown by ${31}P$ spectroscopy, accumulation of $^{133}Cs$ ions in hepatocytes does not produce detectable effects on the metabolism. The hepatic internalization of Gd-EOB-DTPA was followed by the paramagnetic relaxation enhancement of the intracellular $^{133}Cs$ ions, and confirmed by parallel quantitations of Gd and Cs run by inductively coupled plasma analysis of liver samples and aliquots of perfusate. Two peaks are observed at -22.0 and -23.5 ppm, with respect to the line of the external reference arbitarily set to 0 ppm. Upon rinsing of the extracellular compartment with regular K-H free of CsCl, the high-field resonance disappears within 20min. The intracellular concentration was confirmed by ICP, which gives a $Cs^+$ content of $22.0\pm3.5mM$. The relaxation data significantly underestimate the Gd content, suggesting a potential compartmentation of $Cs^+$ and the contrast agent.

  • PDF

A study on Mossbauer Spectra of the $Ni_{1-x}Cd_xFeAlO_4$ system ($Ni_{1-x}Cd_xFeAlO_4$계의 Mossbauer 스펙트럼 연구)

  • 고정대;홍성락;백승도
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.4
    • /
    • pp.192-197
    • /
    • 1998
  • The Mossbauer spectra of the $Ni_{1-x}Cd_xFeAlO_4$ system were investigated with the Cd content x at room temperature. The spectra of the samples exhibit various patterns as follows 1) superparmagnetic relaxation for 0$\leq$x$\leq$0.2, 2) ferrimagnetic sextet for 0.3$\leq$x$\leq$0.5, 3) ferromagnetic relaxation for x=0.6, 0.7, 4) paramagnetic doublet for 0.8$\leq$x$\leq$1, with the Cd content x. In the samples with x values from 0 to 0.2, the substituted $Cd^{2+}$ ions transfer the $Al^{3+}$ ions from A-site to B-site mainly. The superparamagnetic relaxation effect and the ferromagnetic relaxation effect are derived from the $Al^{3+}$, $Cd^{2+}$ respectively. The magnetic structure of the $Ni_{1-x}Cd_xFeAlO_4$ system was explained by the Yafet-Kittel model.

  • PDF