• 제목/요약/키워드: Magnetic positioning

검색결과 140건 처리시간 0.027초

뇌방전 위치표정에 관한 연구(I) (A Study on the lightning Discharge Positioning)

  • 길경석;박대원;김일권;최수연;안창환;이영근
    • 조명전기설비학회논문지
    • /
    • 제21권10호
    • /
    • pp.40-45
    • /
    • 2007
  • 뇌경보시스템은 낙뢰에 의한 인적 물적 피해를 예방하는 중요한 장치이다. 본 논문에서는 뇌경보시스템의 주요기능으로 뇌운의 이동과 활동을 감시할 수 있는 뇌방전 위치표정 알고리즘 및 회로에 대해 연구하였다. 뇌방전시 발생하는 전계성분은 whip 안테나와 공진주파수 300[kHz]의 협대역 공진증폭기로 검출한다. 자계파형 측정회로는 직교루프코일과 적분증폭기로 구성되며 주파수 대역은 5[kHz]$\sim$1.2[MHz]이다. 전계파형으로 뇌방전의 극성을 판별하고, 자계파형의 크기와 영점교차점에 의해 방향과 거리를 산출하여 뇌방전의 위치를 표정한다.

Normal Range of Humeral Head Positioning on the Glenoid on Magnetic Resonance Imaging: Validation through Comparison of Computed Tomography and Magnetic Resonance Imaging

  • Kim, Jung-Han;Min, Young-Kyoung
    • Clinics in Shoulder and Elbow
    • /
    • 제21권4호
    • /
    • pp.186-191
    • /
    • 2018
  • Background: To determine the normal range of humeral head positioning on magnetic resonance imaging (MRI). Methods: We selected normal subjects (64 patients; group A) to study the normal range of humeral head positioning on the glenoid by MRI measurements. To compare the MRI measurement method with the computed tomography (CT), we selected group B (70 patients) who underwent both MRI and CT. We measured the humeral-scapular alignment (HSA) and the humeral-glenoid alignment (HGA). Results: The HSA in the control group was $1.47{\pm}1.05mm$, and the HGA with and without reconstruction were $1.15{\pm}0.65mm$ and $1.03{\pm}0.59mm$, respectively, on MRI. In the test group, HSA was $2.67{\pm}1.47mm$ and HGA with and without reconstruction was $1.58{\pm}1.16mm$ and $1.49{\pm}1.08mm$, on MRI. On CT, the HSA was $1.72{\pm}1.01mm$, and HGA with and without reconstruction were $1.54{\pm}0.96mm$ and $1.59{\pm}0.93mm$, respectively. HSA was significantly different according to image modality (p=0.0006), but HGA was not significantly different regardless of reconstruction (p=0.8836 and 0.9234). Conclusions: Although additional CT scans can be taken to measure decentering in patients with rotator cuff tears, reliable measurements can be obtained with MRI alone. When using MRI, it is better to use HGA, which is a more reliable measurement value based on the comparison with CT measurement (study design: Study of Diagnostic Test; Level of evidence II).

자기 부상 방식 구동원리를 이용한 다자유도 정밀 위치 시스템의 최적 설계, 모델링 및 제어에 관한 연구 (A Study on the Optimal Design, Modeling and Control of the Multi d.o.f Precision Positioning System Using Magnetic Levitation Actuating Principle)

  • 정광석;백윤수
    • 대한기계학회논문집A
    • /
    • 제25권5호
    • /
    • pp.779-787
    • /
    • 2001
  • The multi degree of freedom system using magnetic levitation has been implemented successfully. Differently from another noncontact systems, the developed system was focused on the maximization of the system stiffness under the constraint of a limited input. The variation of a relative adopting point between the magnetic pair, its location on the fixed base, and the selection of optimal specifications for the main active magnetic elements give us another chance to realize the increased robustness against external disturbances with the less control inputs. In this paper, the overall development procedures are given including the optimal design, the dynamic modeling, the various control tests, and the main issues to be solved.

진단 엑스선 영상에서 환자 위치잡이의 자동화 (Auto-Positioning of Patient in X-ray Diagnostic Imaging)

  • 양원석;손정민;천권수
    • 한국방사선학회논문지
    • /
    • 제12권6호
    • /
    • pp.793-799
    • /
    • 2018
  • 인공지능에 대한 관심이 높아짐에 따라 의료분야에서도 활발하게 인공지능이 연구되고 있다. 현재 국내에서는 엑스선 촬영, 컴퓨터단층촬영(Computer Tomography), 자기공명영상(Magnetic Resonance Imaging) 등의 의료영상장치에 인공지능이 접목되고 있으며 향후 방사선사 없이 환자의 방사선 영상을 획득 할 수 있는 인공지능을 탑재한 의료기기가 발명 될 것으로 예상된다. 본 연구는 엑스선 촬영에 있어서 환자 위치잡이에 대한 자동화에 대해서 초기 연구를 했다. 위치잡이에 대한 평가를 위해 엑스선 장비와 인체 팬텀을 사용했다. 프로그램은 Visual Studio 2010 MFC로 구현했으며 영상은 $1,450{\times}1,814$ 크기로 했다. 픽셀 값을 눈으로 식별 가능한 0 ~ 255 값을 갖는 명암으로 변환하여 모니터에 출력했다. 출력한 영상에 세 픽셀 좌표 값을 통해 각도를 예측하고 각도에 따른 음성안내에 따라 환자가 바른 위치잡이를 하도록 유도하는 절차 알고리즘 프로그램을 개발 했다. 다음 연구에서는 사용자가 좌표의 기준을 인공지능에게 전달하는 것이 아닌 인공지능 스스로 구조물을 파악하여 각도를 계산하는 연구를 진행할 것이다. 향후 위치잡이의 자동화를 통해 촬영부터 위치잡이까지 인공지능이 실시하도록 하는 연구에 도움이 될 것으로 예상된다.

Switched Reluctance 추진 원리에 기초한 자기 부상형 위치결정기구 (A Magnetic Suspension Stage Based on the Switched Reluctance Propulsion Principle)

  • 이상헌
    • 대한기계학회논문집A
    • /
    • 제30권6호
    • /
    • pp.622-630
    • /
    • 2006
  • This paper is about the magnetic suspension stage based on the Switched Reluctance propulsion principle. Because the previous studies on contact-free stage adopted the Lorentz force for main force generation mechanism they have suffered from thermal problem deteriorating the precision. Thus, the magnetic suspension stage adopting SR principle which can achieve high force density is proposed. The main operating principle and structure for achieving high resolution and long travel range are represented. The magnetic force analysis of each actuator, providing back data for dynamic modeling and controller design are carried out. By conducting basic experiments, the feasibility of the proposed system is shown. In addition the problems which should be improved and their solutions are represented.

전류신호를 이용한 능동 자기 베어링계의 제어 (Displacement Sensorless Active Magnetic Bearing Control by Current Measurement)

  • 권계시;정호섭;이종원
    • 소음진동
    • /
    • 제5권1호
    • /
    • pp.49-57
    • /
    • 1995
  • An electronic circuit device is developed such that the displacement between an electromagnet and a moving target can be estimated from the coil current measurement, and then applied to an active magnetic bearing system. In order to levitate the shaft without using displacement sensor the stable control gains are obtained from the linearized model which includes the gap estimation circuit. Experimental results show that the shaft, by the estimated gap feedback, can be levitated within $\pm$6 ${\mu}m$ positioning error.

  • PDF

평면 X-Y 스테이지의 초정밀 위치결정을 위한 최적 설계 및 제어시스템 개발 (The Development of Optimal Design and Control System for Ultra-Precision Positioning on Single Plane X-Y Stage)

  • 한재호;김재열;심재기;김창현;조영태;김항우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.348-352
    • /
    • 2002
  • a basis such as IT(Information Technology), NT(Nano Technology) and BT(Bio Technology). Recently, NT is applied to various fields that are composed of science, industry, media and semiconductor-micro technology. It has need of IT that is ultra-precision positioning technology with strokes of many hundreds mm and maintenance of nm precision in fields of ultra micro process, ultra precision measurement, photo communication part and photo magnetic memory. This thesis represents optimal design on ultra-precision positioning with single plane X-Y stage and development of artificial control system for adequacy of industrial demand. Also, dynamic simulation on global stage is performed by using ADAMS (Automated Dynamic Analysis of Mechanical System) for the purpose of grasping dynamic characteristic on user designed X-Y global stage. The error between displacements from micro stage and from FEM(Finite Element Method) is 3.53% by verifications of stability on micro stage and control performance. As maximum Von-mises stress on hinge of micro stage is 5.981kg/mm$^2$ that is 1.5% of yield stress, stability on hinge is secured. Preparing previous results, optimal design of micro stage can be possible, and reliance of results with FEM can be secured.

  • PDF

A modeling of the magnetic levitation stage and its control

  • Nam, Taek-Kun;Kim, Yong-Joo;Jeon, Jeong-Woo;Lee, Ki-Chang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1082-1087
    • /
    • 2003
  • In this paper, we address the development of magnetic levitation positioning system. This planar magnetic levitator employs four permanent magnet liner motors. Each motor generates vertical force for suspension against gravity, as well as horizontal force for drive levitation object called a platen This stage can generate six degrees of freedom motion by the vertical and horizontal force. We derived the mechanical dynamics equation using lagrangian method and used coenergy to express an electromagnetic force. We proposed control algorithm for the position and posture control from its initial value to its desired value using sliding mode control. Some simulation result is provided to verify the effectiveness of the proposed control scheme.

  • PDF

자기부상 스테이지의 모델링과 제어 (Modeling of a Magnetic Levitation Stage and its Control)

  • Yong-Joo, Kim;Jeong-Woo, Jeon;Taek-Kun, Nam
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제28권6호
    • /
    • pp.906-915
    • /
    • 2004
  • In this paper, we address the development of magnetic levitation positioning system. This planar magnetic levitator employs four permanent magnet liner motors. Each motor generates vertical force for suspension against gravity, as well as horizontal force for driving levitation object called a platen. This stage can generate six degrees of freedom motion by the vertical and horizontal force. We derived the mechanical dynamics equation using Lagrangian method and used coenergy to express an electromagnetic force. We proposed a control algorithm for the position and posture control from its initial value to its desired value using sliding mode control. Some simulation results are provided to verify the effectiveness of the proposed control scheme.

Magnetically Suspended Contact-Free Linear Actuator for Precision Stage

  • Lee, Sang-Heon;Baek, Yoon-Su
    • Journal of Mechanical Science and Technology
    • /
    • 제17권5호
    • /
    • pp.708-717
    • /
    • 2003
  • With the development of precision manufacturing technologies, the importance of precision positioning devices is increasing. Conventional actuators, dual stage or mechanically contacting type, have limitation in coping with performance demands. As a possible solution, magnetic suspension technology was studied. Such a contact-free system has advantages in terms of high accuracy, low production cost and easy adaptability to high precision manufacturing processes. This paper deals with magnetically suspended multi-degrees of freedom actuator which can realize large linear motion. In this paper, the operating principle is explained with the magnetic force analysis, and the equations of motion are derived. Experimental results of the implemented system are also given.