• Title/Summary/Keyword: Magnetic positioning

Search Result 140, Processing Time 0.025 seconds

Robustness Examination of Tracking Performance in the Presence of Ionospheric Scintillation Using Software GPS/SBAS Receiver

  • Kondo, Shun-Ichiro;Kubo, Nobuaki;Yasuda, Akio
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.235-240
    • /
    • 2006
  • Ionospheric scintillation induces a rapid change in the amplitude and phase of radio wave signals. This is due to irregularities of electron density in the F-region of the ionosphere. It reduces the accuracy of both pseudorange and carrier phase measurements in GPS/satellite based Augmentation system (SBAS) receivers, and can cause loss of lock on the satellite signal. Scintillation is not as strong at mid-latitude regions such that positioning is not affected as much. Severe effects of scintillation occur mainly in a band approximately 20 degrees on either side of the magnetic equator and sometimes in the polar and auroral regions. Most scintillation occurs for a few hours after sunset during the peak years of the solar cycle. This paper focuses on estimation of the effects of ionospheric scintillation on GPS and SBAS signals using a software receiver. Software receivers have the advantage of flexibility over conventional receivers in examining performance. PC based receivers are especially effective in studying errors such as multipath and ionospheric scintillation. This is because it is possible to analyze IF signal data stored in host PC by the various processing algorithms. A L1 C/A software GPS receiver was developed consisting of a RF front-end module and a signal processing program on the PC. The RF front-end module consists of a down converter and a general purpose device for acquiring data. The signal processing program written in MATLAB implements signal acquisition, tracking, and pseudorange measurements. The receiver achieves standalone positioning with accuracy between 5 and 10 meters in 2drms. Typical phase locked loop (PLL) designs of GPS/SBAS receivers enable them to handle moderate amounts of scintillation. So the effects of ionospheric scintillation was estimated on the performance of GPS L1 C/A and SBAS receivers in terms of degradation of PLL accuracy considering the effect of various noise sources such as thermal noise jitter, ionospheric phase jitter and dynamic stress error.

  • PDF

Method to Improve Localization and Mapping Accuracy on the Urban Road Using GPS, Monocular Camera and HD Map (GPS와 단안카메라, HD Map을 이용한 도심 도로상에서의 위치측정 및 맵핑 정확도 향상 방안)

  • Kim, Young-Hun;Kim, Jae-Myeong;Kim, Gi-Chang;Choi, Yun-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.1095-1109
    • /
    • 2021
  • The technology used to recognize the location and surroundings of autonomous vehicles is called SLAM. SLAM standsfor Simultaneously Localization and Mapping and hasrecently been actively utilized in research on autonomous vehicles,starting with robotic research. Expensive GPS, INS, LiDAR, RADAR, and Wheel Odometry allow precise magnetic positioning and mapping in centimeters. However, if it can secure similar accuracy as using cheaper Cameras and GPS data, it will contribute to advancing the era of autonomous driving. In this paper, we present a method for converging monocular camera with RTK-enabled GPS data to perform RMSE 33.7 cm localization and mapping on the urban road.

Evaluation of Magnetic Resonance Imaging using Image Co-registration in Stereotactic Radiosurgery (정위방사선수술시 영상공동등록을 이용한 자기공명영상 유용성 평가)

  • Jin, Seongjin;Cho, Jihwan;Park, Cheolwoo
    • Journal of the Korean Society of Radiology
    • /
    • v.11 no.4
    • /
    • pp.235-240
    • /
    • 2017
  • The purpose of this study is to confirm the safety of the clinical application of image co - registration in steteotactic radiosurgery by evaluating the 3D positioning of magnetic resonance imaging using image co-registration. We performed a retrospective study using three-dimensional coordinate measurement of 32 patients who underwent stereotactic radiosurgery and performed magnetic resonance imaging follow-up using image co-registration. The 3 dimensional coordinate errors were $1.0443{\pm}0.5724mm$ (0.10 ~ 1.89) in anterior commissure and $1.0348{\pm}0.5473mm$ (0.36 ~ 2.24) in posterior commissure. The mean error of MR1 (3.0 T) was lower than that of MR2 (1.5 T). It is necessary to minimize the error of magnetic resonance imaging in the treatment planning using the image co - registration technique and to confirm it.

Development of MRI Phantom for Assessing MR Image Quality (자기공명영상 화질 평가용 팬텀 개발에 관한 연구)

  • Ahn, Chang-Beom;Na, Dong-Gyu;Kim, Kwang-Gi;Kim, Dong-Sung;Kim, In-Su;Lee, Jung-Whee;Hong, Suk-Joo;Byun, Jae-Ho;Khang, Hyun-Soo;Jang, Gi-Won;Song, In-Chan
    • Investigative Magnetic Resonance Imaging
    • /
    • v.10 no.2
    • /
    • pp.89-97
    • /
    • 2006
  • Purpose : To evaluate MR image qualities we developed a new MRI phantom with the fixation structures necessary to position it into coil firmly. Materials and methods : We designed MRI phantom for eight evaluation items such as slice thickness accuracy, high contrast spatial resolution, low contrast object detectability, geometry accuracy, slice position accuracy, image intensity uniformity, percent signal ghosting and signal to noise ratio. For the positioning of phantom at coils, the fixation structures were set up on the surface of phantom. Six different MRI units were used for test the possibility for the clinical application and their image qualities were evaluated. Results : We acquired appropriate MR image qualities enough for the evaluation on all used MR units and confirmed that their evaluations were within reliable values compared to real ones for some items. The positioning of our phantom into head coils with fixation structures worked well for proper imaging. Conclusion : We found that our prototype of MRI phantom had the possibility of clinical application for MR image quality assessment.

  • PDF

Indoor Positioning System using Geomagnetic Field with Recurrent Neural Network Model (순환신경망을 이용한 자기장 기반 실내측위시스템)

  • Bae, Han Jun;Choi, Lynn;Park, Byung Joon
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.14 no.6
    • /
    • pp.57-65
    • /
    • 2018
  • Conventional RF signal-based indoor localization techniques such as BLE or Wi-Fi based fingerprinting method show considerable localization errors even in small-scale indoor environments due to unstable received signal strength(RSS) of RF signals. Therefore, it is difficult to apply the existing RF-based fingerprinting techniques to large-scale indoor environments such as airports and department stores. In this paper, instead of RF signal we use the geomagnetic sensor signal for indoor localization, whose signal strength is more stable than RF RSS. Although similar geomagnetic field values exist in indoor space, an object movement would experience a unique sequence of the geomagnetic field signals as the movement continues. We use a deep neural network model called the recurrent neural network (RNN), which is effective in recognizing time-varying sequences of sensor data, to track the user's location and movement path. To evaluate the performance of the proposed geomagnetic field based indoor positioning system (IPS), we constructed a magnetic field map for a campus testbed of about $94m{\times}26$ dimension and trained RNN using various potential movement paths and their location data extracted from the magnetic field map. By adjusting various hyperparameters, we could achieve an average localization error of 1.20 meters in the testbed.

MR Technology to 4T

  • Vaughan, Thomas
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.103-105
    • /
    • 2003
  • After fifteen years of development, Magnetic Resonance (MR) technology for human imaging and spectroscopy is reaching a refined state with FDA approved 3T clinical products from Siemens, GE, and Philips. Broker has cleared CE approval with a 4T system. Varian supports a 4T system platform as well. Shielded magnets are standard at 3T from GE, Oxford, Magnex, and IGC. A shielded 4T whole body magnet is available from Oxford. Stronger switched gradients and dynamic shim coils, desired at any field, areespecially useful at higher static magnetic fields B0. In addition to the higher currents required for higher resolution slice or volume selection afforded by higher SNR, whole body gradient coils will be driven at increasing slew rates to meet the needs of new cardiac applications and other requirements. For example 3T and 4T systems are now being equipped with 2kV, 500A gradient coils and amplifiers capable of generating 4G/cm in 200msec, over a 67+/-cm bore diameter. High field EPI applications require oscillation rates at 1 kHz and higher. To achieve a benchmark 0.2 ppm shim over a 30cm sphere in a high field magnet, at least four stages of shimming need to be considered. 1) A good high field magnet will be built to a homogeneity spec. falling in the range of 100 to 150 ppm over this 30cm spherical "sweet spot" 2) Most modern high field magnets will also have superconducting shim coils capable of finding 1.5 ppm by their adjustment during system installation. 3) Passive ferro-magnetic shimming combined with 4) active, high order room temperature shim coils (as many as five orders are now being recommended) will accomplish 0.2 ppm over the 30cm sphere, and 0.1 ppm over a human brain in even the highest field magnets for human studies. Safety concerns for strong, fast gradients at any B0 field include acoustic noise and peripheral nerve stimulation. One or more of the mechanical decoupling methods may lead to quieter gradients. Patient positioning relative to asymmetric or short gradient coils may limit peripheral nerve stimulation at higher slew rates. Gradient designs combining a short coil for local speed and strength with a longer coil for coverage are being developed for 3T systems. Local gradients give another approach to maximizing performance over a limited region while keeping within the physiologically imposed dB0/dt performance limits.

  • PDF

Magnetic Levitated Electric Monorail System for Flat Panel Display Glass Delivery Applications (FPD 공정용 Glass 이송 시스템을 위한 자기부상 EMS의 개발)

  • Lee, Ki-Chang;Moon, Ji-Woo;Koo, Dae-Hyun;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.6
    • /
    • pp.566-572
    • /
    • 2011
  • In recent semiconductor and FPD (Flat Panel Display) manufacturing processes, high clean-class delivery operation is required more and more for short working time and better product quality. Traditionally SLIM (Single-sided Linear Induction Motor) is widely used in the liner drive applications because of its simplicity in the rail structure. A magnetically levitated (Maglev) unmanned vehicle with SLIM traction, which is powered by a CPS (Contactless Power Supply) can be a high precision delivery solution for this industry. In this paper unmanned FPD-carrying vehicle, which can levitate without contacting the rail structure, is suggested for high clean-class FPD delivery applications. It can be more acceptable for the complex facilities composed with many processes which require longer rails, because of simple rail structure. The test setup consists of a test vehicle and a rounded rail, in which the vehicle can load and unload products at arbitrary position commanded through wireless communications of host computer. The experimental results show that the suggested vehicle and rail have reasonable traction servo and robust electromagnetic suspensions without any contact. The resolution of point servo errors in the SLIM traction system is accomplished under 1mm. The maximum gap error is ${\pm}0.25mm$ with nominal air gap length of 4.0mm in the electromagnetic suspensions. This type of automated delivery vehicle is expected to have significant role in the clean delivery like FPD glass delivery.

Design of a VCM actuator for dual servo system

  • Choi, Hyeun-Seok;Han, Chang-Soo;Kim, Seung-Soo;Kim, Eung-Zu;Choi, Tae-Hoon;Na, Kyoung-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.301-306
    • /
    • 2004
  • In this study, Dual servo mechanism with VCM(Voice Coil Motor) and PZT is designed for a high precision force and position control. We designed the VCM actuator and dual servo mechanism with leaf spring. VCM actuators, with their high linearity, simple structure, low weight, and high efficiency, are increasingly being used in micro-positioning applications. There are many kinds of VCM with a structure. VCM actuators are divided into two types by moving parts. One is moving magnet type and the other moving coil type. We described the properties of these two types of VCM. Design parameters of VCM are defined through the FEM simulation analysis of magnetic field and dynamic model of dual servo mechanism. These researches help to for decreasing loss in the air gap of VCM. We present dual servo mechanism is effective mechanism for a force control in hi h precision, properties of designed VCM.

  • PDF

Bearing Estimation of Narrow Band Acoustic Signals Using Cardioid Beamforming Algorithm in Shallow Water

  • Chang, Duk-Hong;Park, Hong-Bae;Na, Young-Nam;Ryu, Jon-Ha
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.2E
    • /
    • pp.71-80
    • /
    • 2002
  • This paper suggests the Cardioid beamforming algorithm of the doublet sensors employing DIFAR (directional frequency analysis and recording) sensor signals in the frequency domain. The algorithm enables target bearing estimation using the signals from directional sensors. The algorithm verifies its applicability by successfully estimating bearings of a target projecting ten narrow-band signals in shallow water. The estimated bearings agree very well with those from GPS (global positioning system) data. Assuming the bearings from GPS data to be real values, the estimation errors are analyzed statistically. The histogram of estimation errors in each frequency have Gaussian shape, the mean and standard deviation dropping in the ranges -1.1°∼ 6.7°and 13.3∼43.6°, respectively. Estimation errors are caused by SNR (signal to noise ratio) degradation due to propagation loss between the source and receiver, daily fluctuating geo-magnetic fields, and non-stationary background noises. If multiple DIFAR systems are employed, in addition to bearing, range information could be estimated and finally localization or tracking of a target is possible.

Vibration suppression in high-speed trains with negative stiffness dampers

  • Shi, Xiang;Zhu, Songye;Ni, Yi-qing;Li, Jianchun
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.653-668
    • /
    • 2018
  • This work proposes and investigates re-centering negative stiffness dampers (NSDs) for vibration suppression in high-speed trains. The merit of the negative stiffness feature is demonstrated by active controllers on a high-speed train. This merit inspires the replacement of active controllers with re-centering NSDs, which are more reliable and robust than active controllers. The proposed damper design consists of a passive magnetic negative stiffness spring and a semi-active positioning shaft for re-centering function. The former produces negative stiffness control forces, and the latter prevents the amplification of quasi-static spring deflection. Numerical investigations verify that the proposed re-centering NSD can improve ride comfort significantly without amplifying spring deflection.