• Title/Summary/Keyword: Magnetic particles

Search Result 630, Processing Time 0.028 seconds

Size Control of Nd-Fe-B Precursor Particles Prepared by Spray Drying and Its Effect on the Magnetic Properties of Nd-Fe-B Alloy Powders after Reduction-Diffusion (분무건조된 Nd-Fe-B 전구체 입자의 크기조절 및 환원-확산 후 자기 특성에 미치는 영향)

  • Baek, Youn-Kyoung;Seo, Young-Taek;Lee, Jung-Goo;Kim, Dong Su;Bae, Dong Sik;Choi, Chul-Jin
    • Journal of Powder Materials
    • /
    • v.20 no.5
    • /
    • pp.359-365
    • /
    • 2013
  • In this study, we fabricated $Nd_2Fe_{14}B$ hard magnetic powders with various sizes via spray drying combined with reduction-diffusion process. Spray drying is widely used to produce nearly spherical particles that are relatively homogeneous. Thus, the precursor particles were prepared by spray drying using the aqueous solution containing Nd salts, Fe salts and boric acid with the target stoichiometric composition of $Nd_2Fe_{14}B$. The mean particle sizes of the spray-dried powders are in the range from one to seven micrometer, which are adjusted by controlling the concentrations of precursor solutions. After debinding the as-prepared precursor particles, ball milling was also conducted to control the particle sizes of Nd-Fe-B oxide powders. The resulting particles with different sizes were subjected to subsequent treatments including hydrogen reduction, Ca reduction and washing for CaO removal. The size effect of Nd-Fe-B oxide particles on the formation of $Nd_2Fe_{14}B$ phase and magnetic properties was investigated.

Influence of Machining on Magnetic Properties of Soft Magnetic Composites

  • Igarashi, Kazunori;Miyahara, Masahisa;Morimoto, Koichiro
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1175-1176
    • /
    • 2006
  • Influences of machining on magnetic properties of soft magnetic composites (SMC's) with addition of two kinds of binder, i.e., organic binder and inorganic one, were investigated. Machining does not affect DC magnetic properties of the SMC compacts. This can be ascribed to their particular structure in which the ironpowder particles are highly isolated by the binder. On the other hand, decrease in resistivity and resultant increase in eddy current loss was confirmed in the machined compacts containing inorganic binder. It is supposed that the brittleadditive binder existing between the iron particles is partly broken, and iron-to-iron contact is formed on the machined surface.

  • PDF

The Study on the Application of CNT Particle in High-Precision Magnetic Abrasive Polishing Process (초정밀 자기연마 공정에 탄소나노튜브 입자의 적용에 관한 연구)

  • Kwak, Tae-Kyung;Kwak, Jae-Seob
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.3
    • /
    • pp.274-279
    • /
    • 2011
  • In this study, new abrasives that were composed of iron powder and carbon nanotube (CNT) particle were attempted to be abrasives for magnetic abrasive polishing. Because the CNT particles itself are very small ones with high hardness and magnetic strength, these properties are effective for magnetic abrasive polishing of nonmagnetic materials. As an experimental result for evaluating the machining characteristics in magnetic abrasive polishing, the CNT particles showed better performance than the conventional abrasives such as Fe and CBN powder.

Crystallographic and Magnetic Properties of Iron Oxide Nanoparticles for Applications in Biomedicine

  • Lee, Sang-Won;Woo, Kyoung-Ja;Kim, Chul-Sung
    • Journal of Magnetics
    • /
    • v.9 no.3
    • /
    • pp.83-85
    • /
    • 2004
  • Magnetic nanoparticles have been investigated for use as biomedical purposes for several years. For biomedical applications the use of particles that present superparamagnetic behavior at room temperature is preferred [1-4]. To control the magnetic materials by magnetic field is essential locate particle to the suitable destination on feeding by injection. In order to use them properly, the particles should be nano size. However there are many difficulties in applications, because there is lack of identifications in nano magnetic properties. In our studies, structural and magnetic properties of iron oxide nanoparticles were investigated by XRD, VSM, TEM, and Mossbauer spectroscopy. At 13 K, hyperfine fields of ${\gamma}-Fe_2O_3$ were 516 kOe and 490 kOe, that of $Fe_3O_4$ were 517 kOe and 482 kOe. The saturation magnetizations were 21.42 emu/g and 39.42 emu/g. The particle size of powders is 5~19 nm.

Simulating astrophysical shocks with a combined PIC MHD code

  • van Marle, Allard Jan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.56.2-56.2
    • /
    • 2018
  • Astrophysical shocks accelerate particles to high velocities, which we observe as cosmic rays. The acceleration process changes the nature of the shock because the particles interact with the local magnetic field, removing energy and potentially triggering instabilities. In order to simulate this process, we need a computational method that can handle large scale structures while, at the same time, following the motion of individual particles. We achieve this by combining the grid magnetohydrodynamics (MHD) method with the particle-in-cell (PIC) approach. MHD can be used to simulate the thermal gas that forms the majority of the gas near the shock, while the PIC method allows us to model the interactions between the magnetic field and those particles that deviate from thermal equilibrium. Using this code, we simulate shocks at various sonic and Alfvenic Mach numbers in order to determine how the behaviour of the shock and the particles depends on local conditions.

  • PDF

Development of New Biochip Using Magnetic Force (자기력에 의한 신규 바이오칩의 개발)

  • Choi, Yong-Sung;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.105-108
    • /
    • 2006
  • This paper describes a new constructing method of multifunctional biosensor using many kinds of biomaterials. A metal particle and an array was fabricated by photolithographic. Biomaterials were immobilized on the metal particle. The array and the particles were mixed in a buffer solution, and were arranged by magnetic force interaction and random fluidic self-assembly. A quarter of total Ni dots were covered by the particles. The binding direction of the particles was controllable, and condition of particles was almost with Au surface on top. The particles were successfully arranged on the array. The biomaterial activities were detected by chemiluminescence and electrochemical methods.

  • PDF

Preparation and Magnetic Properties of Ba-Ferrite Particles Using the Supercritical Water Crystallization Method

  • Nam, Sung-Chan;Kim, Kun-Joong;Park, Sang-Do
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.433-440
    • /
    • 2000
  • Barium ferrite particles were synthesized from Ba(NO$_3$)$_2$, Fe(NO$_3$)$_3$ and KOH mixed solutions using hydrothermal crystallization in supercritical water. The experimental apparatus for production of barium ferrite is a flow-type apparatus. Fine barium ferrite particles were produced because supercritical water causes the metal hydroxides to be rapidly dehydrated before significant growth takes place. The effects of Fe/Ba ratio and reaction time on the formation, particle size, and magnetic properties of barium ferrite were studied. When Fe/Ba ratio were varied from 0.5 to 12, single-phase barium ferrite powder was only produced in the range of 0.5〈Fe/Ba〈2. Also, with elevating reaction time, the BaO.6Fe$_2$O$_3$ particle size grew smaller. Especially, uniform barium hexaferrite particles of size 100-200nm were obtained at 80sec. In this study, therefore, single-phase barium ferrite particles are highly stable and can be produced continuously in a reaction time of less then 2min.

  • PDF

Development of New Biochip using Magnetic Interaction and Random Fluidic Self-assembly (자기력과 Random Fluidic Self-assembly에 의한 신규 바이오칩의 개발)

  • Choi, Yong-Sung;Kwon, Young-Soo;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.6
    • /
    • pp.615-621
    • /
    • 2004
  • This paper describes a new constructing method of multifunctional biosensor using many kinds of biomaterials. A metal particle and an array was fabricated by photolithographic. Biomaterials were immobilized on the metal particle. The array and the particles were mixed in a buffer solution, and were arranged by magnetic force interaction and random fluidic self-assembly. A quarter of total Ni dots were covered by the particles. The binding direction of the particles was controllable, and condition of particles was almost with Au surface on top. The particles were successfully arranged on the array. The biomaterial activities were detected by chemiluminescence and electrochemical methods.

Development of 3-Dimensional Biochip Using Magnetic Interaction and Self-Assembly (자기력과 self-assembly에 의한 3차원 바이오칩의 개발)

  • Choi, Yong-Sung;Park, Dae-Hee;Kwon, Young-Soo;Tamiya, E.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1909-1911
    • /
    • 2003
  • This research describes a new constructing method of multifunctional biosensor using many kinds of biomaterials. A metal particle and an array was fabricated by photolithographic. Biomaterials were immobilized on the metal particle. The array and the particles were mixed in a buffer solution, and were arranged by magnetic force interaction and self-assembly. A quarter of total Ni dots were covered by the particles. The binding direction of the particles was controllable, and condition of particles was almost with Au surface on top. The particles were successfully arranged on the array. The biomaterial activities were detected by chemiluminescence and electrochemical methods.

  • PDF

Protein Chip Using Magnetic Force (자기력에 의한 단백질칩)

  • Choi, Yong-Sung;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.386-387
    • /
    • 2006
  • This research describes a new constructing method of multifunctional biosensor using many kinds of biomaterials. A metal particle and an array was fabricated by photolithographic. Biomaterials were immobilized on the metal particle. The array and the particles were mixed in a buffer solution, and were arranged by magnetic force interaction and self-assembly. A quarter of total Ni dots were covered by the particles. The binding direction of the particles was controllable, and condition of particles was almost with Au surface on top. The particles were successfully arranged on the array. The biomaterial activities were detected by chemiluminescence and electrochemical methods.

  • PDF