• Title/Summary/Keyword: Magnetic orbital

Search Result 124, Processing Time 0.026 seconds

Influence of [VO4]3- Bridges on Magnetic Coupling in Ba2V3O9 Studied by Molecular Orbital Calculations

  • Kang, Dae-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.7
    • /
    • pp.2341-2344
    • /
    • 2012
  • A molecular orbital study is presented of the magnetic coupling in the one-dimensional vanadium oxide $Ba_2V_3O_9$ with a bridge formed by two different types of $VO_4$ tetrahedra. The concept of complementary versus counter-complementary effect has been used to explain the structural origin of the magnetic behavior of the compound. Namely, the observed antiferromagnetic coupling is dominated by the orbital complementarity of the V(1) tetrahedra sharing only one oxygen corner with two adjacent $VO_6$ octahedra. The second type of V(2) tetrahedra does not provide a noticeable contribution to the magnetic coupling due to the orbital counter-complementarity of the bridging ligand.

Ligand Field Approach to $4d^{1}$ Magnetism Based on Intermediate Field Coupling Scheme

  • 최진호;김종영
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.9
    • /
    • pp.976-981
    • /
    • 1997
  • The magnetic susceptibilities of molybdenum ions with 4d1 electronic configuration in the octahedral crystal field were calculated on the basis of ligand field theory. The experimental magnetic susceptibilities for molybdenum ions, which are stabilized at the octahedral site in the perovskite lattice of Ba2ScMoⅤO6 and Sr2YMoⅤO6, were compared with the theoretical ones. We have tried to fit their temperature dependence of magnetic susceptibility with ligand field parameters, spin-orbit coupling constant ζSO, and orbital reduction parameter κ according to intermediate field coupling and strong field theory. Strong field coupling theory could not explain experimental curves without unrealistically large axial ligand field, since it ignores the mixing up between different state via spin-orbit interaction and ligand field. On the other hand, the intermediate field coupling theory could successfully reproduce experimental data in octahedral and trigonal ligand field. The fitting result demonstrates not only the fact that spin-orbit interaction is primarily responsible for the variation of magnetic behavior but also the fact that effective orbital overlap, enhanced by cubic crystal structure, reduces significantly orbital angular momentum as indicated by κ parameter.

Calculation of the Magnetic Moments for Transition Metal Complexes (I). The Magnetic Moments for Distorted Octahedral $[Ti(III)A_3B_3]$ Type Complexes [A and B = Cl, O, N, Br] (전이원소착물의 자기모멘트의 계산 (제1보). 일그러진 팔면체 $[Ti(III)A_3B_3]$형태 착물의 자기모멘트 [A 및 B = Cl, O, N, Br])

  • Sangwoon Ahn;Eu Suh Park;Byung Bin Park
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.2
    • /
    • pp.91-100
    • /
    • 1980
  • A formula for calculation of the magnetic moments for octahedral $[Ti(III)A_3B_3]$ type complexes with axial symmetry has been developed and the magnetic moments for these complexes are calculated, using the experimental values of the distortion parameters$({\delta})$, spin-orbit coupling constants and orbital reduction factors. The calculated magnetic moments for axially distorted octahedral $[Ti(III)A_3B_3]$ type complexes are in resonable agreement with the experimental valuest It is found that the calculated magnetic moments decrease as the extent of axial distortion increases and the orbital reduction factor decreases. A calculation method of the magnetic moments for octahedral $[Ti(III)A_3B_3]$ type complexes which are in a ligand field of lower than axial symmetry has also been developed and the structure of distorted octahedral $[Ti(III)A_3B_3]$ type complexes are discussed on the basis of the of the calculated magnetic moments.

  • PDF

X-Ray Magnetic Circular Dichroism (X-선 자기 원형 이색성)

  • Kim, Jae-Young
    • Journal of the Korean Magnetics Society
    • /
    • v.20 no.5
    • /
    • pp.201-205
    • /
    • 2010
  • X-ray magnetic circular dichroism (XMCD) has been used as an important tool of magnetics due to its unique abilities to measure element-specific magnetic properties and to separate the orbital and the spin magnetic moments. These abilities allow researchers to access the microscopic origin of the magnetic properties of transition metal and rare earth compounds. In this report, I explain the principle of XMCD and the experimental set-up. Recent a few research examples using XMCD will be also introduced.

Theoretical Studies on the Structure and Aromaticity of 1H-Indene and Mono-sila-1H-Indene (1H-Indene과 Mono-sila-1H-Indene의 구조와 방향족성에 대한 이론적 연구)

  • Ghiasi, Reza;Monnajemi, Majid
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.4
    • /
    • pp.281-290
    • /
    • 2006
  • The electronic structure and properties of the 1H-indene and mono-sila-1H-indene series have been investigated using basis set of 6-31G(d, p) and hybrid density functional theory. Basic measures of aromatic character derived from structure, molecular orbitals, a variety of magnetic criteria (magnetic isotropic and anisotropic susceptibilities) are considered. Energetic criteria suggest that In(Si7) enjoy conspicuous stabilization. However, by magnetic susceptibility isotropic this system are among the least aromatic of the family: Within their isomer series, In(Si4) is the most aromatic using this criteria. Natural bond orbital (NBO) analysis method was performed for the investigation of the relative stability and the nature of the 8-9 bonds in 1H-indene and mono-sila-1H-indene compounds. The results explained that how the p character of natural atomic hybrid orbital on X8 and X9 (central bond) is increased by the substitution of the C8 and C9 by Si. Actually, the results suggested that in these compounds, the X8-X9 bond lengths are closely controlled by the p character of these hybrid orbitals and also by the nature of C-Si bonds. The magnitude of the molecular stabilization energy associated to delocalization from X8-X9 and to * X8-X9 bond orbital were also quantitatively determined. Molecular orbital (MO) analysis further reveal that all structure has three delocalized MOs and two delocalized MOs and therefore exhibit the aromaticity.

Analysis of Induced Magnetic Field Bias in LEO Satellites Using Orbital Geometry-based Bias Estimation Algorithm (궤도 기하학 기반 바이어스 추정기법을 이용한 저궤도 위성의 유도자기장 바이어스 분석)

  • Lee, S.H.;Yong, K.L.;Choi, H.T.;Oh, S.H.;Yim, J.R.;Kim, Y.B.;Seo, H.H.;Lee, H.J.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.11
    • /
    • pp.1126-1131
    • /
    • 2008
  • This paper applies the Orbital Geometry-based Bias Estimation Algorithm to the magnetometer measurement data of KOMPSAT-1 and 2 and analyzes the induced magnetic field bias caused by the solar panels and electronics boxes in spacecraft bus. This paper reveals that the estimation and correction of the induced magnetic field bias copes with the aging process of magnetometer and makes it possible to carry on the satellite mission by extending its lifetime.

Neural Network based Three Axis Satellite Attitude Control using only Magnetic Torquers

  • Sivaprakash, N.;Shanmugam, J.;Natarajan, P.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1641-1644
    • /
    • 2005
  • Magnetic actuation utilizes the mechanic torque that is the result of interaction of the current in a coil with an external magnetic field. A main obstacle is, however, that torques can only be produced perpendicular to the magnetic field. In addition, there is uncertainty in the Earth magnetic field models due to the complicated dynamic nature of the field. Also, the magnetic hardware and the spacecraft can interact, causing both to behave in undesirable ways. This actuation principle has been a topic of research since earliest satellites were launched. Earlier magnetic control has been applied for nutation damping for gravity gradient stabilized satellites, and for velocity decrease for satellites without appendages. The three axes of a micro-satellite can be stabilized by using an electromagnetic actuator which is rigidly mounted on the structure of the satellite. The actuator consists of three mutually-orthogonal air-cored coils on the skin of the satellite. The coils are excited so that the orbital frame magnetic field and body frame magnetic field coincides i.e. to make the Euler angles to zero. This can be done using a Neural Network controller trained by PD controller data and driven by the difference between the orbital and body frame magnetic fields.

  • PDF

Exotic superconducting state under high magnetic fields: Insights from iron-based superconductor

  • Min Jae Kim;Jong Mok Ok
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.2
    • /
    • pp.1-4
    • /
    • 2023
  • Over the past decade, the exploration of high-temperature superconductivity and the discovery of a wide range of exotic superconducting states in Fe-based materials have propelled condensed matter physics research to new frontiers. These materials exhibit intriguing phenomena arising from their multiband electronic structure, strongly orbital-dependent effects, extremely small Fermi energy, electronic nematicity, and topological aspects. Among the various factors influencing their superconducting properties, high magnetic fields play a crucial role as a control knob capable of disrupting the subtle balance between the spin, charge, lattice, and orbital degrees of freedom, leading to the emergence of various exotic superconducting states. In this review, we provide an overview of the current understanding of the exotic superconducting states observed in Fe-based superconductors, with a particular focus on FeSe and Sr2VO3FeAs, under the influence of high magnetic fields.

Effects of Al Impurity on Magnetism in bcc Fe by a First-principles Calculation

  • Seo, Seung-Woo;Rahman, Gul;Kim, In-Gee
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2009.12a
    • /
    • pp.72-73
    • /
    • 2009
  • First-principles calculations were carried out to investigate the effects of Al impurities on bcc Fe magnetism by considering SOC. No significant solid solution hardening effect was found. Albeit the effects of the SOC by Al on spin magnetic moments were minor, there are sizeable orbital magnetic effects. It is concluded that the orbital magnetism due to the Al impurity is strongly related with the impurity screening of the system as seen in Si impurity case [3], but the effects of Al impurity is stronger than those of Si impurity in terms of orbital magnetism.

  • PDF

NMR for magnetite

  • Lee, Soonchil
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.4
    • /
    • pp.101-106
    • /
    • 2018
  • Magnetite is the oldest magnet material known to mankind. It is getting attention again from solid state physics researchers now a days because it is one of the most strongly correlated electron systems. Spin, charge, and orbital orders are interplaying with lattice and involved in the Verwey transition where magnetization, conductivity, and structure changes suddenly. The peculiar ordering states above and below the transition temperature mainly originate from the coexistence of $Fe^{2+}$ and $Fe^{3+}$ ions in the B site of the inverse spinel structure. In particular, the state of the charge and orbital order was the oldest and most intriguing problem. NMR has made significant contribution to the investigation of this question. A. Abragam stated that there is no doubt that NMR is a very powerful tool for the study of ferromagnetic and antiferromagnetic materials. In this mini-review, a short history of NMR investigation of magnetite is presented, providing a support to Abragam's claim.