• 제목/요약/키워드: Magnetic fluids

검색결과 183건 처리시간 0.226초

MR Imaging of the Perihepatic Space

  • Angele Bonnin;Carole Durot;Manel Djelouah;Anthony Dohan;Lionel Arrive;Pascal Rousset;Christine Hoeffel
    • Korean Journal of Radiology
    • /
    • 제22권4호
    • /
    • pp.547-558
    • /
    • 2021
  • The perihepatic space is frequently involved in a spectrum of diseases, including intrahepatic lesions extending to the liver capsule and disease conditions involving adjacent organs extending to the perihepatic space or spreading thanks to the communication from intraperitoneal or extraperitoneal sites through the hepatic ligaments. Lesions resulting from the dissemination of peritoneal processes may also affect the perihepatic space. Here we discuss how to assess the perihepatic origin of a lesion and describe the magnetic resonance imaging (MRI) features of normal structures and fluids that may be abnormally located in the perihepatic space. We then review and illustrate the MRI findings present in cases of perihepatic infectious, tumor-related, and miscellaneous conditions. Finally, we highlight the value of MRI over computed tomography.

MR 유체를 이용한 햅틱 디스플레이의 질감 반응 특성 (Tactile Response Characteristics of Haptic Displays based on Magneto-Rheological Fluids)

  • 장민규;최재영;이철희
    • Tribology and Lubricants
    • /
    • 제26권3호
    • /
    • pp.184-189
    • /
    • 2010
  • In this paper, tactile response characteristics in medical haptic interface are investigated to characterize the feeling of contact between the finger skin and the organic tissue when a finger is dragged over tissue. In order to represent the tactile feeling, a prototype tactile display incorporating Magneto-Rheological (MR) fluid has been developed. Tactile display devices simulate the finger's skin to feel the sensations of contact such as compliance, curvature and friction. Thus, the tactile display provides the surface information of organic tissue to the surgeon using different actuating mechanisms ranging from the conventional mechanical motor to the smart material actuators. In order to investigate the compliance feeling of human finger's touch, vertical force responses of the tactile display under the various magnetic fields have been assessed. Also, frictional resistive force responses of the tactile display are investigated to simulate the action of finger's dragging. From the results, different tactile feelings are observed as the applied magnetic field is varied and arrayed magnetic poles combinations. This research gives a smart technology of tactile displaying.

First Studies for the Development of Computational Tools for the Design of Liquid Metal Electromagnetic Pumps

  • Maidana, Carlos O.;Nieminen, Juha E.
    • Nuclear Engineering and Technology
    • /
    • 제49권1호
    • /
    • pp.82-91
    • /
    • 2017
  • Liquid alloy systems have a high degree of thermal conductivity, far superior to ordinary nonmetallic liquids and inherent high densities and electrical conductivities. This results in the use of these materials for specific heat conducting and dissipation applications for the nuclear and space sectors. Uniquely, they can be used to conduct heat and electricity between nonmetallic and metallic surfaces. The motion of liquid metals in strong magnetic fields generally induces electric currents, which, while interacting with the magnetic field, produce electromagnetic forces. Electromagnetic pumps exploit the fact that liquid metals are conducting fluids capable of carrying currents, which is a source of electromagnetic fields useful for pumping and diagnostics. The coupling between the electromagnetics and thermo-fluid mechanical phenomena and the determination of its geometry and electrical configuration, gives rise to complex engineering magnetohydrodynamics problems. The development of tools to model, characterize, design, and build liquid metal thermomagnetic systems for space, nuclear, and industrial applications are of primordial importance and represent a cross-cutting technology that can provide unique design and development capabilities as well as a better understanding of the physics behind the magneto-hydrodynamics of liquid metals. First studies for the development of computational tools for the design of liquid metal electromagnetic pumps are discussed.

공침법에 의해서 제조된 자성유체의 자기적 특성 변화 연구 (The Study of Physical Properties of Magnetite Fluids Prepared by Coprecipitation Method)

  • 고재귀;이정훈
    • 한국자기학회지
    • /
    • 제11권5호
    • /
    • pp.217-221
    • /
    • 2001
  • Fe$^{2+}$와 Fe$^{3+}$ 의 혼합 수용액에 공침 보조 용액 3N-NaOH를 첨가해 공침 반응 시켜 Magnetite를 제조하였다. Magnetite의 제조에 앞서 첨가되는 Fe$^{2+}$이온과 Fe$^{3+}$ 이온의 비를 변화시키면서 Magnetite의 자기적 특성 변화를 조사하였다. 또한 Magnetite의 제조 온도의 변화를 통해 Magnetite의 자기적 특성 변화를 살펴보았고, 이렇게 제조된 Magnetite의 자성유체로서의 가능성을 알아보기 위해 X-ray 회절을 통해 결정성을 살펴보았다. 그 결과 Magnetite분말의 합성에서 Fe$^{2+}$와 Fe$^{3+}$ 의 비가 0.46 : 0.54일 때 Magnetite의 자기적 특성값 $\sigma$$_{s}$,는 60.8 emu/g이었고, 같은 조건에서 합성 온도를 80 $^{\circ}C$로 30분간 유지 시켰을 때의 $\sigma$$_{s}$ 값은 63.51 emu/g으로 교반 온도가 높을수록 자기적 특성값이 좋아지는 것을 알 수 있었다.다.

  • PDF

Multi-scale Driving of Turbulence and Astrophysical Implications

  • Yoo, Hyunju;Cho, Jungyeon
    • 천문학회보
    • /
    • 제38권2호
    • /
    • pp.61.1-61.1
    • /
    • 2013
  • Turbulence is a common phenomenon in astrophysical fluids such as the interstellar medium (ISM) and the intracluster medium (ICM). In turbulence studies it is customary to assume that fluid powered by an energy injection on a single scale. However, in astrophysical fluids, there can be many different driving mechanisms that act on different scales simultaneously. In this work, we assume multiple energy injection scale (2${\surd}$12 and 15

  • PDF

페그마타이트에서 산출하는 전기석의 운모화작용: 고분해능 투과전자현미경(HRTEM) 연구 (Sericitization of Tourmaline in a Pegmatite: a HRTEM Study)

  • 안중호;이정후
    • 한국광물학회지
    • /
    • 제9권1호
    • /
    • pp.7-16
    • /
    • 1996
  • Partially sericitized tourmaline from a pegmatite, Black Hills, South Dakota, U.S.A., was investigated using high-resolution transmission electron microscopy (HRTEM). Muscovite occurs as the only alteration product of tourmaline, and it is developed extensively as narrow veinlets along the {110} and {100} cleavage directions of tourmaline, indicating that a cleavage-controlled alteration mechanism was dominant. Muscovite was characterized mainly as two-layer polytypes with minor stacking disorder, but tourmaline is almost free of structural defects. HRTEM images of tourmaline-muscovite interfaces revealed that the interfaces between two minerals are composed of well-defined {110} and {100} boundaries of tourmaline. The (001) of muscovite is in general parallel to the c-axis of tourmaline, but tourmaline and replacing muscovite do not show specific crystallographic orientation relationship; muscovite consists of numerous 100-1000$\AA$ thick subparallel packets, and the angles between the (001) of muscovite and (110) of tourmaline is highly variable. Al/Si ratios of both minerals suggest that tourmaline to muscovite alteration by late magnetic fluids has been facilitated by their similar Al/Si ratio in the incipient alteration stage, in that the hydration reaction with preservation of Al and Si would require only addition of K+ and H2O. Aluminous minerals other than muscovite were not characterized as the alteration products of tourmaline, indicating that tourmaline reacted directly to muscovite; the tourmaline alteration apparently occurred by the presence of residual fluids in which K+ is available and silica was not undersaturated.

  • PDF

대시포트형 MR유체 마운트의 설계 인자에 대한 실험적 고찰 (An Experimental Study on the Design Parameters of the Dashpot type MR fluid mount)

  • 박우철;김일겸;이현창
    • 한국산학기술학회논문지
    • /
    • 제10권12호
    • /
    • pp.3567-3573
    • /
    • 2009
  • 본 연구에서는 MR유체를 특징으로 하는 대시포트형 마운트를 제안하고, 자극 형상 및 구조의 변화가 MR유체 마운트의 감쇠력에 미치는 영향에 대하여 실험적으로 고찰하였다. 자극의 유효길이와 코어 중심부의 구조를 달리하여 MR 유체 마운트를 제작하였다. MR유체 마운트에 자기장을 형성하기 위하여 공급하는 전류의 세기를 변화시켰을 때의 감쇠력 변화와 전류를 공급하지 않은 경우의 감쇠력 변화를 측정하였다. 또한, 가진 변위는 일정하게 유지한 상태에서 MR엔진마운트에 가해지는 가진 주파수를 변화시켜 감쇠력의 변화를 측정하였다. MR유체마운트로부터 전달되는 힘은 가진 주파수가 증가함에 따라 감소하는 경향을 나타냈으며, 공급하는 전류의 세기가 증가함에 따라 전달되는 힘은 증가하여 나타났다. 자기장이 형성되는 MR마운트에 유효길이 변화에 대해서는 전달력의 변화가 나타나지 않았다.

Physicochemical Characteristics of Fe3O4 Magnetic Nanocomposites Based on Poly(N-isopropylacrylamide) for Anti-cancer Drug Delivery

  • Davaran, Soodabeh;Alimirzalu, Samira;Nejati-Koshki, Kazem;Nasrabadi, Hamid Tayefi;Akbarzadeh, Abolfazl;Khandaghi, Amir Ahmad;Abbasian, Mojtaba;Alimohammadi, Somayeh
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권1호
    • /
    • pp.49-54
    • /
    • 2014
  • Background: Hydrogels are a class of polymers that can absorb water or biological fluids and swell to several times their dry volume, dependent on changes in the external environment. In recent years, hydrogels and hydrogel nanocomposites have found a variety of biomedical applications, including drug delivery and cancer treatment. The incorporation of nanoparticulates into a hydrogel matrix can result in unique material characteristics such as enhanced mechanical properties, swelling response, and capability of remote controlled actuation. Materials and Methods: In this work, synthesis of hydrogel nanocomposites containing magnetic nanoparticles are studied. At first, magnetic nanoparticles ($Fe_3O_4$) with an average size 10 nm were prepared. At second approach, thermo and pH-sensitive poly (N-isopropylacrylamide -co-methacrylic acid-co-vinyl pyrrolidone) (NIPAAm-MAA-VP) were prepared. Swelling behavior of co-polymer was studied in buffer solutions with different pH values (pH=5.8, pH=7.4) at $37^{\circ}C$. Magnetic iron oxide nanoparticles ($Fe_3O_4$) and doxorubicin were incorporated into copolymer and drug loading was studied. The release of drug, carried out at different pH and temperatures. Finally, chemical composition, magnetic properties and morphology of doxorubicin-loaded magnetic hydrogel nanocomposites were analyzed by FT- IR, vibrating sample magnetometry (VSM), scanning electron microscopy (SEM). Results: The results indicated that drug loading efficiency was increased by increasing the drug ratio to polymer. Doxorubicin was released more at $40^{\circ}C$ and in acidic pH compared to that $37^{\circ}C$ and basic pH. Conclusions: This study suggested that the poly (NIPAAm-MAA-VP) magnetic hydrogel nanocomposite could be an effective carrier for targeting drug delivery systems of anti-cancer drugs due to its temperature sensitive properties.

EFFECTS OF RADIATION AND HEAT GENERATION ON MHD AND PARABOLIC MOTION ON CASSON FLUIDS FLOW THROUGH A ROTATING POROUS MEDIUM IN A VERTICAL PLATE

  • J. PRAKASH;A. SELVARAJ
    • Journal of applied mathematics & informatics
    • /
    • 제42권3호
    • /
    • pp.607-623
    • /
    • 2024
  • This article studies the effects of heat generation/absorption and thermal radiation on the unsteady magnetohydrodynamic (MHD) Casson fluid flow past a vertical plate through rotating porous medium with constant temperature and mass diffusion. It is assumed that the plate temperature and concentration level are raised uniformly. For finding the exact solution, a set of non-dimensional partial differential equations is solved analytically using the Laplace transform technique. The influence of various non-dimensional parameters on the velocity are discussed, including the effects of the magnetic parameter M, heat generation/absorption Q, thermal radiation parameter R, Prandtl number Pr, Schmidt number Sc, permeability of porous medium parameter, Casson fluid parameter γ, on velocity, temperature, and concentration profiles, which are discussed through several figures. It is found that velocity, temperature, and concentration profiles in the case of heat generation parameter Q, Casson fluid parameter γ, thermal Grashof number Gr, mass Grashof number Gc, Permeability Porous medium parameter K, and time t have retarding effects. It is also seen that the magnetic field M, Thermal Radiation parameter R, Prandtl field Pr, Schmidt number Sc have reverse effects on it.

관군 열교환기에서 균일 자기장에 의한 전기 전도성 유체의 열유동 특성에 관한 수치해석 연구 (Numerical Study of Thermo-Fluid Features of Electrically Conducting Fluids in Tube Bank Heat Exchangers Exposed to Uniform Magnetic Fields)

  • 오진호;강남철;박일석
    • 대한기계학회논문집B
    • /
    • 제41권10호
    • /
    • pp.659-665
    • /
    • 2017
  • 본 연구에서는 엇갈림 배열 관군 사이를 전기 전도성 유체가 흐를 때 외부에서 인가한 자기장의 영향으로 변화하는 열유동 특성을 수치해석적으로 연구하였다. Reynolds 수 50과 100의 비정상 층류 관군 유동에서 외부 인가 자기장의 세기를 의미하는 Hartmann 수를 0에서 100까지 점진적으로 변화시킴에 따라 관군 내부의 열유동 특성을 관찰하였다. Hartmann 수가 증가함에 따라 인가 자기장의 영향으로 관표면의 속도 경계층이 얇아지고, 유동 박리를 후류로 지연시키며, 관 후면에 형성되는 재순환 영역의 크기가 줄어드는 것을 관찰하였다. 최종적으로 열유동 변형에 의한 결과적 국소 및 평균 Nusselt 수 변화 특성을 제시하였다.