• Title/Summary/Keyword: Magnetic fluids

Search Result 183, Processing Time 0.035 seconds

A Study on the Heat Transfer Characteristics of Magnetic Fluids in Concentric Double Pipe Annuli (이중원관내 자성유체의 열전달 특성에 관한 연구)

  • Park, J.W.;Park, G.T.;Seo, L.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1657-1662
    • /
    • 2003
  • In this study, to research characteristics of heat flow of magnetic fluid, it's studied about numerical and experimental method of natural convections change and characteristics of heat transfer in Concentric double pipe annuli as analysis model. In the result, natural convection of magnetic fluid is controlled by direction and strength of the impressed magnetic field. Especially, according to average Nusselt number, heat transfer is the smallest on the balancing point between body force and buoyancy.

  • PDF

A Simplified Unified Model for Predicting the Dielectrophoretic Aactivity of Magnetic Nanoparticles Aimed at Enhancing the Dielectric Characteristics of Transformer Oil

  • Lee, Jong-Cheol;Jeon, Hong-Pil
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.431.2-431.2
    • /
    • 2014
  • The dielectric breakdown voltage (DBV) is a measure of an insulating fluids ability to withstand a high electric field stress without breaking down. Conventionally, the presence of water or particulate matter in a dielectric fluid comprises the liquid's breakdown strength. However, the addition of magnetic nanoparticles (MNPs) in the base oil can increase the dielectric breakdown voltage of the fluid reversely, if the condition of the added particles in the fluid is in balance with that of keeping down the initiation and propagation of electrical streamers. In this study, we developed a mathematical model by a set of coupled, nonlinear equations using the COMSOL multiphysics finite element simulation suite and calculated the dielectrophoretic activity of magnetic nanoparticles suspended in the presence of electric field, which is the behavior responsible for enhancing the dielectric characteristics of transformer oil, in order to examine how the activity differ in a transformer oil-based magnetic fluid.

  • PDF

Material Characterization of MR Fluids at High Frequencies (고주파 영역에서의 MR 유체 특성연구)

  • Park, Kyoung-Mi;Kim, Jae-Hwan;Choi, Seung-Bok;Kim, Kyung-Su
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.210-215
    • /
    • 2002
  • MR(Magnetorheogical) fluid composed of fine iron powders dispersed in silicon oil is utilized to many smart structures and devices because of its significant rheological property change by the application of an external magnetic field. When we deal with the shock wave attenuation of warship structures, we should be able to characterize the high frequency behavior of MR fluids. So far, however, many efforts have been focused on the material characterization of MR fluids at low frequencies below 100Hz. In this paper, the MR fluid property characterization at high frequency region is performed. An experimental setup based on wave transmission technique is made and the storage modulus as well as the loss modulus of MR fluids are found from the measured data of speed sound and attenuation. Details of the experiment are addressed and the obtained storage and loss moduli are addressed at $50kHz{\sim}100kHz$.

  • PDF

Experimental Study on Sloshing Characteristics of a Ferrofluid in the Spherical Container (구형 용기 내 자성유체의 슬로싱 특성에 관한 실험적 연구)

  • Kim, Dae-Wan;Lee, Moo-Yeon;Seo, Lee-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.5
    • /
    • pp.173-177
    • /
    • 2013
  • This work describes the experimental investigations on sloshing characteristics of water and ferrofluid as working fluids in the spherical container with the horizontal oscillation motion and compared the results obtained by two working fluids. In order to Investigate the sloshing characteristics of the sphere container with the horizontal oscillation, experiments are performed with the magnetic intensities from 0 mT to 50 mT and horizontal oscillation motions from 5 mm to 15 mm. As results, Ferrofluid without magnetic field in the sphere container showed a similar liquid surface movement with water. The resonance point of the ferrofluid in the sphere container happened at higher value than that of the theoretical resonance frequency with the rise of the magnetic field. In addition, the sloshing characteristics of the ferrofluid in the sphere container can be controlled with the resonance frequency with the magnetic intensity and the liquid surface displacement could be also controlled.

Turbulent boundary layer control via electro-magnetic forces (전자기력을 이용한 난류경계층 제어)

  • Lee J.-H.;Sung H, J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.03a
    • /
    • pp.166-171
    • /
    • 2004
  • Direct numerical simulations are peformed to investigate the physics of a spatially developing turbulent boundary layer flow suddenly subjected to spanwise oscillating electro-magnetic forces in the near-wall region. The Reynolds number based on the inlet momentum thickness and free-stream velocity is $Re_\theta=300$. A fully-implicit fractional step method is employed to simulate the flow. The mean flow properties and the Reynolds stresses are obtained to analyze the near-wall turbulent structure. It is found that skin-friction and turbulent kinetic energy can be reduced by the electro-magnetic forces. Instantaneous flow visualization techniques are used to observe the response of streamwise vortices to spanwise oscillating forces. The near-wall vortical structures are clearly affected by spanwise oscillating electro-magnetic forces.

  • PDF

Oxidation and Magnetic Properties of Iron-nitride Particles in Fluids

  • Lee, Hyo-Sook;Isao Nakatani
    • Resources Recycling
    • /
    • v.11 no.5
    • /
    • pp.7-10
    • /
    • 2002
  • Iron nitride magnetic fluid was oxidized by exposing it to the air under normal atmospheric conditions. After exposure of 3.2 hours, the relative saturation magnetization of the iron nitride magnetic fluid is less than 0.4 compared to the value of the unexposed sample, and it is nearly zero after exposure for 1008 hours. The structure of the oxidized iron nitride is considered to be a non-magnetic hematites. The thickness of the oxidation layers of the iron-nitride particles are nearly the same, about 3 nm, regardless of the different particle sizes.

A Study on the Effect of the Material and Applied Magnetic Field Strength on the Friction Characteristics of Magnetorheological Fluids (재질과 자기장 세기가 자기유변유체의 마찰 특성에 미치는 영향)

  • Zhang, Peng;Lee, Kwang-Hee;Lee, Chul-Hee
    • Tribology and Lubricants
    • /
    • v.29 no.1
    • /
    • pp.39-45
    • /
    • 2013
  • Magnetorheological (MR) fluid belongs to the group of smart materials. In MR fluid, iron particles in base oil form chains in the direction of the applied magnetic field, thus resulting in a variation in the stiffness and damping characteristics of the fluid. Research is being carried out on controlling the stiffness and damping characteristics as well as the tribological characteristics of the MR fluid. In this study, the friction characteristics of MR fluid have been evaluated using three types of materials and magnetic fields of different strengths. The coefficients of friction of the three types of MR fluid are measured, and the relationship between the coefficient of friction and the strength of the applied magnetic field is obtained.

Experimental Investigation for Shear Modulus of MRE due to Magnetic Field and Volume Percent of CIP (자기장과 CIP 성분비 변화에 따른 MRE의 전단탄성계수에 대한 실험적 조사)

  • Yoon, Ji-Hyun;Fawazi, N.;Yoon, K.;Chung, K.;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.753-753
    • /
    • 2008
  • Magneto-rheological elastomers(MRE) are similar to magnetorheological fluids. Thus, rheological properties of MRE can be also controlled by an applied magnetic field. The MRE in this experiment is a mixture of natural rubber(NR), carbonyl iron powder(CIP), ZnO, and sulfur. Three specimens were prepared and tested by using the vibration testing instruments. The magnetic field was generated by the electromagnets. Natural frequencies of the oscillator were changed by the applied magnetic field. The properties of the MRE were increased due to magnetic field strength.

  • PDF

Characteristics of MR Fluids with Different Working Modes (작동모드에 따른 MR유체의 특성 비교)

  • 이호근;김기선
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.2 no.2
    • /
    • pp.107-113
    • /
    • 2001
  • This work presents field-dependent Bingham and response characteristics of MR fluids under shear and flow modes. Two different types of magneto-viscometers are designed and manufactured for the shear and flow modes. respectively. For the MR fluid to be tested, MRF-132LD of Lord co. is employed. The field-dependent yield stress is experimentally distilled at various temperatures using the magneto-viscometers. Time responses of the MR fluids to step electric fields are also evaluated under two operating modes.

  • PDF

A Controllable Micro Damper Using Magneto-Rheological Fluids (자기유변유체를 이용한 마이크로 가변형 댐퍼)

  • Kim, Ki-Duck;Sim, Won-Chul;Jeon, Do-Young;Choi, Bum-Kyoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.41-45
    • /
    • 2000
  • This paper provides a new concept of the controllable micro damper using MR(Magneto Rheological)fluids. The damper is composed of four layers which are fabricated by wet etching. The Process of the fabrication is explained and the change of damping property is experimentally shown. Since the damping force is controllable by the applied magnetic field the vibration can be effectively absorbed.

  • PDF