• Title/Summary/Keyword: Magnetic film polarizer

Search Result 2, Processing Time 0.016 seconds

Circularly polarized soft X-ray generation by Co/Pt thin film polarizer with perpendicular magnetic anisotropy

  • Lee, Sang-Hyuk;Huang, Lin;Lee, Jae-Woong;Kim, Namdong;Shin, Hyun-Joon;Jeong, Jong-Ryul;Hwang, Chanyong;Kim, Dong-Hyun
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1196-1200
    • /
    • 2018
  • We have experimentally demonstrated circular polarization generation from linear polarized soft X-ray at synchrotron by adopting a thin magnetic film polarizer. Polarizer is composed of Co/Pt multilayer with a perpendicular magnetic anisotropy, which allows us to easily accommodate without needing any tilting angle into the measurement setup since the circular polarization is generated for the X-ray with normal incidence and transmission. Generated circular polarization is examined by observing magnetic domain features based on the X-ray magnetic circular dichroism, where~11% of circular component is estimated compared to the case of full circular polarization.

A study on the Nano Wire Grid Polarizer Film by Magnetic Soft Mold (Magnetic soft mold를 이용한 나노 와이어 그리드 편광 필름 연구)

  • Jo, Sang-Uk;Chang, Sunghwan;Choi, Doo-Sun;Huh, Seok-Hwan;Jeong, Myung Yung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.2
    • /
    • pp.85-89
    • /
    • 2014
  • We propose the new fabrication method of a 70 nm half-pitch wire grid polarizer with high performance using magnetic soft mold. The device is a form of aluminium gratings on a PET(Polyethylene phthalate) substrate whose size of $3cm{\times}3cm$ is compatible with a TFT_LCD(Tin Flat Transistor Liquid Crystal Display) panel. A magnetic soft mold with a pitch of 70 nm is fabricated using two-step replication method. As a result, we get a NWGP pattern which has 70.39 nm line width, 64.76 nm depth, 140.78 nm pitch, on substrate. The maximum and minimum transmittances of the NWGP at 800 nm are 75% and 10%, respectively. This work demonstrates a unique cost-effective solution for nanopatterning requirements in consumer electronics components.