• Title/Summary/Keyword: Magnetic device

Search Result 932, Processing Time 0.03 seconds

A Three-dimensional Magnetic Field Mapping System for Deflection Yoke of Cathode-Ray Tube

  • Park, K.H.;Yoon, M.;Lee, S.M.;Joo, H.D.;Lee, S.D.;Yang, W.Y.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.868-871
    • /
    • 2002
  • In this paper, we introduce an efficient three-dimensional magnetic field mapping system for a Deflection Yoke (DY) in Cathode-Ray Tube (CRT). A three-axis Hall probe mounted in a small cylindrical bar and three stepping motors placed in a nonmagnetic frame are utilized for the mapping. Prior to the mapping starts, the inner contour of DY is measured by a laser sensor to make a look-up table for inner shape of DY. Three-axis magnetic fields are then digitized by a three-dimensional Hall probe. The results of the mapping can be transformed to various output formats such as multipole harmonics of magnetic fields. Field shape in one, two and three-dimensional spaces can also be displayed. In this paper, we present the features of this mapping device and show some analysis results.

  • PDF

Starting Current Application for Magnetic Stimulation

  • Choi, Sun-Seob;Bo, Gak-Hwang;Kim, Whi-Young
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.51-57
    • /
    • 2011
  • A power supply for magnetic-stimulation devices was designed via a control algorithm that involved a start current application based on a resonant converter. In this study, a new power supply for magnetic-stimulation devices was designed by controlling the pulse repetition frequency and pulse width. The power density could be controlled using the start-current-compensation and ZCS (zero-current switching) resonant converter. The results revealed a high-repetition-frequency, high-power magnetic-stimulation device. It was found that the stimulation coil current pulse width and that pulse repetition frequency could be controlled within the range of 200-450 ${\mu}S$ and 200-900 pps, respectively. The magnetic-stimulation device in this study consisted of a stimulation coil device and a power supply system. The maximum power of the stimulation coil from one discharge was 130 W, which was increased to 260 W using an additional reciprocating discharge. The output voltage was kept stable in a sinusoidal waveform regardless of the load fluctuations by forming voltage and current control using a deadbeat controller without increasing the current rating at the starting time. This paper describes this magnetic-stimulation device to which the start current was applied.

Enhancement of the Magnetic Flux in Metglas/PZT-Magnetoelectric Integrated 2D Geomagnetic Device

  • Huong Giang, D.T.;Duc, P.A.;Ngoc, N.T.;Hien, N.T.;Duc, N.H.
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.308-315
    • /
    • 2012
  • Experimental investigations of the magnetization, magnetostriction and magnetoelectric (ME) effects were performed on sandwich - type Metglas/PZT/Metglas laminate composites. The results have been analyzed by taking into account the demagnetization contribution. The study has pointed out that the magnetic flux concentration is strongly improved in piezomagnetic laminates with a narrower width leading to a significant enhancement of the ME effects. The piezomagnetic laminates with the optimal area dimension were integrated to form a 2-D geomagnetic device, which simultaneously can precisely detect the strength as well as inclination of the earth's magnetic field. In this case, a magnetic field resolution of better than $10^{-4}$ Oe and an angle precision of ${\pm}0.1^{\circ}$ were determined. This simple and low-cost geomagnetic-field device is promising for various applications.

Level Set Based Topology Optimization of Magnetic Device Considering Actuating Force (구동력을 고려한 자기장치의 레벨셋기반 위상최적설계)

  • Park, Sang-In;Min, Seung-Jae
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.643-645
    • /
    • 2008
  • To obtain weight reduction and high performance, level set based topology optimization in magnetic fields is promising for the design of magnetic devices where the precise boundary shape and topological chanages are required. Level set function is introduced to represent ferromagnetic material boundaries and material properties of the magnetic reluctivity are determined. The optimization problem is formulated for maximizing the actuating force in a prescribed direction under limited usage of ferromagnetic material.

  • PDF

A Study on the Surface Control of a Magnetic Fluid (자성유체의 표면제어에 관한 연구)

  • Shin, J.O.;Rhee, E.J.;Park, M.K.
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.65-69
    • /
    • 2001
  • In this study, the deformation of the free surface motion of a magnetic fluid for the change in electromagnetic force is discussed. In case, magnetic fluid in characteristics of fluid adjusted to the opposite direction of the gravity direction. Thus, the device of a magnetic fluid proposed the complete zero-leakage Sealing and the surface actuator. The device of surface deformation as well comparison between numerical simulation and experiments as will be presented.

  • PDF

Korean Institute of Electrical and Electronic Materials (규소강판 코어소재의 가공 방법에 따른 철손 특성)

  • Kim, I.S.;Jeong, S.J.;Min, B.K.;Kim, H.W.;Song, J.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.343-344
    • /
    • 2006
  • 방향성 규소강판을 tape-wound core 형태로 제작하여 가공방법에 따른 자기적 특성을 조사 하였다. 그 결과 곡률반경이 40mm인 시료에서 보자력(Hc)과 포화자속밀도(Bs)는 우수한 값을 나타내었고, 보자력은 0.02Oe, 포화자속밀도는 1.85T 이었다. 현재 국내에서 생산되고 있는 방향성 규소강판의 자속밀도값 보다 우수한 값을 나타내었다. 본 연구로부터 방향성 규소강판을 이용하여 권자심을 제작할 때 도입되는 탄성변형에 대한 대책의 중요성과 코어 소재의 가공방법이 자기적 특성에 미치는 영향을 통해 고효율 방향성 규소강판 개발의 가능성을 확인하였다.

  • PDF

Position Estimation Using Magnetic Field Map (자기장 지도를 이용한 위치 추정)

  • Kim, Han-Sol;Moon, Woo-Sung;Seo, Woo-Jin;Baek, Kwang-Ryul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.4
    • /
    • pp.290-298
    • /
    • 2013
  • Geomagnetic is refracted by building's wall and pillar. Therefore refracted geomagnetic is able to be used as feature point. In a specific space, a mobile device that is equipped with magnetic sensor array measures 3-axis magnetic field for each point. Magnetic field map is acquired by collecting the every sample point in the magnetic field. The measured magnetic field must be calibrated, because each magnetic sensor has a distortion. For this reason, sensor distortion model and sensor calibration method are proposed in this paper. Magnetic field that is measured by mobile device matches magnetic field map. Result of the matching is used for position estimation. This paper implements hardware system for position estimation method using magnetic field map.

Magnetic Core Reactor for DC Reactor type Three-Phase Fault Current Limiter

  • Kim, Jin-Sa;Bae, Duck-Kweon
    • International Journal of Safety
    • /
    • v.7 no.2
    • /
    • pp.7-11
    • /
    • 2008
  • In this paper, a Magnetic Core Reactor (MCR) which forms a part of the DC reactor type three-phase high-Tc superconducting fault current limiter (SFCL) has been developed. This SFCL is more economical than other types with three coils since it uses only one high-Tc superconducting (HTS) coil. When DC reactor type three-phase high-Tc SFCL is developed using just one coil, fewer power electronic devices and shorter HTS wire are needed. The SFCL proposed in this paper needs a power-linking device to connect the SFCL to the power system. The design concept for this device was sprang from the fact that the magnetic energy could be changed into the electrical energy and vice versa. Ferromagnetic material is used as a path of magnetic flux. When high-Tc superconducting DC reactor is separated from the power system by using SCRs, this device also limits fault current until the circuit breaker is opened. The device mentioned above was named Magnetic Core Reactor (MCR). MCR was designed to minimize the voltage drop and total losses. Majority of the design parameters was tuned through experiments with the design prototype. In the experiment, the current density of winding conductor was found to be $1.3\;A/mm^2$, voltage drop across MCR was 20 V and total losses on normal state was 1.3 kW.