• Title/Summary/Keyword: Magnetic deflector

Search Result 2, Processing Time 0.015 seconds

Magnetic Micro-Deflector for a Microcolumn System (초소형 전자칼럼을 위한 마이크로 자기장 디플렉터 연구)

  • Kim, Young-Chul;Kim, Dae-Wook;Ahn, Seung-Joon;Kim, Ho-Seob;Park, Seong-Soon;Park, Kyoung-Wan;Hwang, Nam-Woo
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.6
    • /
    • pp.426-431
    • /
    • 2007
  • We have fabricated a magnetic micro-deflector for a microcolumn system and tested its performance by operating it in the low energy region. The micro-deflector is composed of Cu coils around cylindrical cores with $500{\mu}m$ diameter. The diameter of the Cu coil itself is $100{\mu}m$. Two pairs of deflectors designed for a 2-dimensional scan, that is X and Y deflection, are fixed on an insulating plate. The low power performance of a magnetic micro-deflector attached to a microcolumn system has been tested and the magnitude of deflection is measured to be ${\sim}100{\mu}m/A$, which offers the possibility for practical applications of the magnetic micro-deflector.

A Study on the Comparison and Analysis of Debris Reduction System on Small Bridge (소교량 유송잡물 저감시설의 비교 분석 연구)

  • Kim, Sung-Joong;Jung, Do-Joon;Kang, Joon-Gu;Yeo, Hong-Koo;Kim, Jong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.31-41
    • /
    • 2016
  • Damage to structures, such as bridge piers, are increasing rapidly due to the debris moving along rivers at the time of flooding. Therefore, the debris fin, debris deflector and debris sweeper, which are debris reduction systems, were produced in this study and an accumulation experiment was carried out on the experimental channel according to the existence of the reduction system. The debris fin is the reduction system that creates parallel flow on debris accumulated on the bridge to pass through the bridge, which was produced using wood. In addition, the debris deflector was produced using steel pipes and it has the type of detouring the direction of debris. The debris sweeper passes the debris using the magnetic force rotation of a screw-shaped cylindrical structure by water flow and it was produced using acrylic material. The experiment was carried out by analyzing the level of accumulation according to the hardness and dropping method of the debris and comparing the accumulation rate of reduction systems, and the experiment was carried out 5 times. According to the experimental results, there was a difference in the accumulation rate according to the type of reduction system and the shape of debris, and it often depended significantly on the initial shape of debris accumulation. The direct debris reduction effect on the bridge was higher in the order of the debris deflector, debris sweeper and debris fin, but in case of the debris deflector, damage, such as stream turbulence, changes in water level and river bed, and the loss of deflector can occur due to debris accumulated directly on the debris deflector. Therefore, it is necessary to design the debris deflector considering these issues.