• Title/Summary/Keyword: Magnetic crane

Search Result 14, Processing Time 0.026 seconds

Analysis of Vulnerable Parts based on Non-destructive Testing Data of Tower Crane Welding Parts (타워크레인의 용접부 비파괴검사 데이터 기반 취약부위 분석)

  • Jeong, SeongMo;Lim, Jae-Yong
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.2
    • /
    • pp.50-56
    • /
    • 2021
  • The purpose of this study is to investigate vulnerable parts of tower crane structures by analyzing extensive non-destructive test data. Approximately ten percent of domestically registered tower cranes were inspected by using magnetic particle inspection. The testing was carried out as advised in KS B 0213. The non-destructive results was analyzed with respect to jib types, age and crane size. As a result, the number of crack occurrences were the largest in mast parts, followed by main jib part. Moreover, it was found that turntables were important parts deserved to be noticed at the perspective of safe maintenance.

Performance Evaluation of Hydraulic and Magnetic Clamp Crane for Transporting Curved Steel Plate for Shipbuilding, with Permanent Magnet Applied (영구자석을 적용한 선박용 곡면 철판 이송용 유압식 마그네틱 클램프 이송장치의 성능평가에 대한 고찰)

  • Moon, Byung Young;Lee, Sung Bum;Lee, Ki Yeol
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.4
    • /
    • pp.322-330
    • /
    • 2015
  • As a new technical approach, a hydraulic and magnetic clamp device was developed to realize a magnetic clamp crane system by simultaneously actuating eight individual hydraulic cylinders. In this approach, an Sr-type of ferritic permanent magnet (SrO· 6Fe2O3), rather than the previous electromagnet, was utilized for the purpose of lifting and transporting the large curved steel plates used for manufacturing ships. This study had the goal of developing and manufacturing a hydraulic, magnetic clamp prototype composed of three main parts, including the base frame, cylinder joint, and magnet joint, in order to safely transport curved steel plates. Furthermore, this research included a performance evaluation of the manufactured prototype and acquired the purposed quantity value in the performance test. The most significant item, the magnetic adhesive force (G), was evaluated in a performance test, which utilized a ferritic permanent magnet (Sr type) with 3700~4000 G of residual induction (Br) and 2640/2770 Oe of coercive force (Hc). In particular, relevant items such as the hoist tension (kN), transportation time (s), and applied load (Kgf) on the hydraulic cylinders were also evaluated in order to determine the optimum values.

A Development of an Integrated Inventory Managing System for Steel-Plates (강재 통합 관리 시스템 개발)

  • Lee, Seok Hyun;Yu, Ji Hun;Kim, Hyun Chul;Jang, Seok Min;Lim, Rae Soo;Kim, Ho Kyeong;Heo, Joo Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.2
    • /
    • pp.130-137
    • /
    • 2014
  • As one of the largest shipbuilding company in the world, STX Offshore & Shipbuilding currently developed an inventory managing system for steel-plates, which is applied to their steel stock yard. In a traditional way to manage steel yard, almost every work has been done by manually. The manual steel-plate piling process caused some problems such as process delay due to piling errors and the uncertainty of work plan due to lack of information. To solve these problems, we developed an integrated inventory managing system based on real-time crane tracking system which automatically updates steel-plates' piling status. We built the integrated steel-plate database, developed several programs including steel-plate input program, real-time steel-plate monitoring program and steel-yard management program, and constructed hardware system for tracking magnetic cranes. As a result, a supervisor of steel-yard can manage the inventory of steel-plates efficiently and furthermore plan an efficient piling schedule and crane working schedule.

Development of Real-time Remote Detection System for Crane Wire Rope Defect (크레인 와이어 로프의 실신간 원격 결함탐지 시스템 개발)

  • Lee Kwon Soon;Suh Jin Ho;Min Jeong Tak;Lee Young Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.1
    • /
    • pp.53-60
    • /
    • 2005
  • The wire rope of container crane is a important component to container transfer system and is used in a myriad of various applications such as elevator, mine hoist, construction machinery, and so on. If it happen wire rope failures in operating, it may lead to the safety accident and economic loss, which is productivity decline, competitive decline of container terminal, etc. To solve this problem, we developed the active and portable wire rope fault detecting system. The developed system consists of three parts that are the fault detecting, signal processing, and remote monitoring part. All detected signal has external noise or disturbance according to circumstances. Therefore we applied to discrete wavelet transform to extract a signal from noisy data that was used filter. As experimental result, we can reduce the expense for container terminal because of extension of exchange period of wire rope for container crane and this system is possible to apply in several fields to use wire rope.

Underwater Magnetic Field Mapping Using an Autonomous Surface Vehicle (자율수상선을 이용한 수중 자기장 지도 작성)

  • Jung, Jongdae;Park, Jeonghong;Choi, Jinwoo
    • The Journal of Korea Robotics Society
    • /
    • v.13 no.3
    • /
    • pp.190-197
    • /
    • 2018
  • Geomagnetic field signals have potential for use in underwater navigation and geophysical surveys. To map underwater geomagnetic fields, we propose a method that exploits an autonomous surface vehicle. In our system, a magnetometer is rigidly attached to the vehicle and not towed by a cable, minimizing the system's size and complexity but requiring a dedicated calibration procedure due to magnetic distortion caused by the vehicle. Conventional 2D methods can be employed for the calibration by assuming the horizontal movement of the magnetometer, whereas the proposed 3D approach can correct for horizontal misalignment of the sensor. Our method does not require a supporting crane system to rotate the vehicle, and calibrates and maps simultaneously by exploiting data obtained from field operation. The proposed method has been verified experimentally in inland waters, generating a magnetic field map of the test area that is of much higher resolution than the public magnetic field data.

The Performance Evaluation of a Hydraulic and Magnetic Clamp Device Manufactured to Transport with Safety the Curved Steel Plate Required for Shipbuilding

  • Moon, Byung Young;Park, Kwang Bok;Hong, Young Jun;Lee, Sung Bum;Lee, Ki Yeol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.527-535
    • /
    • 2015
  • As a new technical approach, a hydraulic and magnetic clamp device was attempted to realize a magnetic clamp crane system that uses 8 simultaneously actuating individual hydraulic cylinders. Through this approach, a Sr type of ferritic permanent magnet ($SrO{\cdot}6Fe_2O_3$), not the previously employed electro-magnet, was utilized for the purpose of lifting and transporting the heavy weighted and oversized curved steel plates used for manufacturing the ships. This study is aimed at manufacturing and developing the hydraulic magnetic clamp prototype, which is composed of three main parts - the base frame, cylinder joint, and magnet joint - in order to safely transport such curved steel plates. Furthermore, this research was pursued to conduct a performance evaluation as to the prototype manufacture and acquire the planned quantity value and the development purpose items. The most significant item for a performance evaluation was estimated for the magnetic adhesive force (G) and in this process, a ferritic permanent magnet (Sr type) with 3700~4000 G of residual induction (Br) and 2640/2770 Oe of coercive force (Hc) was utilized. In addition, other relevant items such as hoist tension (kN), transportation time (sec), and the applied load (Kgf) exerted on the hydraulic cylinders were also evaluated in order to acquire the optimum quantity value. As a result of the evaluation, the relevant device turned out to be suitable for safely transporting the curved steel plates.

Conceptual design and fabrication test of the HTS magnets for a 500 W-class superconducting DC rotating machine under 77 K

  • Choi, J.;Kim, S.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.35-38
    • /
    • 2021
  • Conventional direct current (DC) rotating machines are usually used for crane and press machine using high torque in metal and steel industries, because of a constant output power along variable rotating speed. A general DC motor with permanent field magnets could not increase a magnetic flux density at a gap between armature coils and field magnets. However, a superconducting DC motor has field magnets composed with high temperature superconducting (HTS) coils and it could increase the magnetic flux density at the gap to over 10 times than those of a general DC motor by control the excitation current into HTS coils. The superconducting DC motor could be operated with extremely high torque and constant output power at a low rotational speed. In this paper, a 500 W superconducting DC rotating machine was conceptually designed with a LN2 (Liquid Nitrogen) cooling method and the operation characteristics results of HTS field magnets were presented. The two no-insulation HTS magnets for a 500 W superconducting DC rotating machine were fabricated. The excitation current for the HTS magnets could be controlled from 0 to 40 A. This test results will be available to design large-sized HTS magnets for a number of hundred kW class superconducting DC rotating machine under LN2 cooling system.

A study on Development of Auto Steel-Plate Pile System Using Measurement System (계측시스템을 이용한 자동 강재 적치 관리 시스템 개발에 관한 연구)

  • Yu, Ji-Hun;Kim, Ho-Kyoung;Kim, Rea-Soo;Sin, Hun-Joo
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.424-428
    • /
    • 2008
  • On processing of the shipbuilding, Various steel plates are used as the important material in many fields including the shell plate, a structure, etc. Therefore, the proper steel plate management system like a warehousing, pile, delivery is very important. Presently Operators manage the steel plate by using the software program, but they manage many parts manually, so many problems are generated on the steel plate check, management, and operator safety. In order to solve this problem, we developed Auto Steel-Plate Piling System. Also this system automatically manages and traces the steel-plate from warehousing to delivery.

  • PDF

Output characteristics of hybrid power generation system for special vehicles (특장 차량용 하이브리드 발전시스템의 출력특성)

  • Han, Keun-Woo;Choi, Myoung-Hyun;Kim, Seong-Gon;Lee, Chung-Hoon;Han, Man-Seung;Jung, Young-Gook
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.288-289
    • /
    • 2017
  • This study deals with output characteristics of a hybrid power generation system for a vehicle such as a crane, a fire engine, and a wingbody. The proposed method obtains the commercial AC voltage of single phase 220V/60Hz by connecting a variable speed three-phase PMSG(Permanent magnetic synchronous generator) and an AC/DC/AC power converter to PTO (Power take off) or hydraulic motor. The proposed system is fabricated and tested to demonstrate the usefulness of the proposed system.

  • PDF

Physicochemical properties of the materials used for the production of celadon maebyeong inlaid with cloud-and-crane designs and changes in their morphological properties by production stage (청자상감운학문매병 제작 재료의 물리화학적 특성 및 제작 단계별 형상학적 특성 변화)

  • Kim, Jihye;Ha, Jihyang;Han, Minsu
    • Conservation Science in Museum
    • /
    • v.25
    • /
    • pp.63-84
    • /
    • 2021
  • In order to investigate the diverse physicochemical changes that occurred in traditional Korean pottery during its production, including before and after firing, this study produced six replicas of a celadon maebyeong inlaid with cloud-and-crane designs, respectively corresponding to the process of shaping, carving, inlaying designs, first firing, glazing and second firing, respectively. It then conducted a scientific study of these six replicas and analyzed their images through high-resolution three-dimensional transmission imaging. The materials used for the replicas show different mineral phases and even colors depending on the components of each material. For example, black inlay with a high content of iron oxide (Fe2O3) shows dark colors and white inlay with a high alumina (Al2O3) content appears white. Physicochemical properties such as chromaticity and magnetic susceptibility and major components of the replicas were confirmed by the differences in the density in the computed tomography (CT) images. The characteristics of fired products such as fine structure, absorption ratio, apparent porosity, and other characteristics of the major mineral components were identified by the presence of pores and the formation of cracks inside the replicas in the image analysis.