• Title/Summary/Keyword: Magnetic cooling

Search Result 245, Processing Time 0.028 seconds

The Influence of Hi-flux Powders Characteristics on the Performance of Magnetic Powder Cores

  • Zhao, Tong Chun;Ma, Hong Qiu;Ding, Fu Chang
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.451-452
    • /
    • 2006
  • The influence of Hi-flux powders characteristics on the performance of magnetic powder cores was studied. It was found that different cooling rate and nozzle configuration could change the shape and microstructure of powders. Smooth surface and spherical shape of powders were beneficial to improve DC bias performance and reduce core losses of magnetic powder core.

  • PDF

Magnetic Semiconductors Thin Films-Unidirectional Anisotropy

  • Lubecka, M.;Maksymowicz, L.J.;Szymczak, R.;Powroznik, W.
    • Journal of Magnetics
    • /
    • v.4 no.1
    • /
    • pp.33-37
    • /
    • 1999
  • Unidirectional magnetic anisotropy field ($H_an$) was investigated for thin films of $CdCr{2-2x}In_{2X}Se_4 (0$\leq$x$\leq$0.2). This anisotropy originates from the microscopic anisotropic Dzyaloshinskii-Moriya (DM) interaction which arise from the spin-orbit scattering of the conduction electrons by the nonmagnetic impurities. This interaction maintains the remanent magnetization in the direction of the initial applied field. Then the single easy direction of the magnetization is parallel to the direction of the magnetic field. The anisotropy produced by field cooling is unidirectional I.e. the spins system deeps some memory of the cooling field direction. The chalcogenide spinel of$ CdCr_{2-2x}In){2X}Se_4$belongs to the class of the magnetic semiconductors. The magnetic disordered state is obtained when ferromagnetic structure is diluted by In. Then we have the mixed phase characterised by coexistence the magnetic long range ordering (IFN-infinite ferromagnetic network) and the spin glass order (Fc-finite clusters). The total magnetic anisotropy energy depends on the state of magnetic ordering. In our study we concentrated on the magnetic state with reentrant transition and spin glass state. The polycrystalline $ CdCr_{2-2x}In){2X}Se_4$ thin films were obtained by rf sputtering technique. We applied the ferromagnetic resonance (FMR) and M-H loop techniques for determining the temperature composition dependencies of Han. From the experimental data, we have found that Han decreases almost linearly when temperature is increased and in the low temperature is about three times bigger at SG state with comparison to the state with REE.

  • PDF

Jitter Radiation for Gamma-ray Burst Prompt Emission

  • Mao, Ji-Rong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.48.1-48.1
    • /
    • 2011
  • We utilize the jitter radiation, which is the emission of relativistic electrons in the random and small-scale magnetic field, to investigate the high-energy emissions of gamma-ray bursts (GRBs). Under the turbulent scenario, the random and small-scale magnetic field is determined by the turbulence. We also estimate the acceleration and cooling timescales. We identify that some GRBs are possible cosmic-ray sources.

  • PDF

Improvement of Position Tacking Performance of Magnetostrictive Actuator Using Compressed Air Cooling (압축 공기 냉각을 이용한 자기 변형 액추에이터의 위치 추종 성능 향상)

  • Kwak, Yong-Kil;Hwang, Jin-Dong;Kim, Churl-Min;Kim, Sun-Ho;Ahn, Jung-Hwan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.51-56
    • /
    • 2007
  • Precision positioning system with magnetostrictive actuator(MA) has widely used in manufacturing devices to control the positioning accuracy to meet the high load and stroke requirements. It has many advantage in comparison with piezoelectric actuator; high force, high strain, high efficient etc. But, the performance of Terfenol-D, the commercially available magnetostrictive material, is highly dependent on the prestress, magnetic field intensity and temperature. This paper present an experimental investigation of the temperature effect on displacement characteristics of magnetostrictive actuator. In this paper, compressed cold air is proposed to improve of positioning accuracy of magnetostrictive actuator. The compressed cold air cooling system has good cooling effect Experimental results confirming the effectiveness of the proposed cooling system as high precision positioning system are also has presented in this paper.

A Study on the Heat Transfer Control Characteristics of Benard Flow a Magnetic Fluids in a Rectangular Enclosure (장방형 용기내 자성유체의 Benard유동에 대한 전열 제어 특성에 관한 연구)

  • Ahn, Jong-kug;Seo, Lee-Soo;Park, Gil-Moon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.4 s.25
    • /
    • pp.32-39
    • /
    • 2004
  • This study deals with the Benard Flow of Magnetic Fluids in a rectangular cavity which the ratio between height and width is 1 : 4 and the base side or left side is a heating face while other sides are to be cooling faces. When Magnetic field was equally impressed, considering the internal rotation of the elementary ferromagnetic particle, we found the following result from the numerical analysis of the GSMAC algorithm applied to the equation of the magnetic fluid. Benard flow is controlled by intensity and direction of magnetic fields, and critical point appears when especially magnetic field with a heating base and side area near H=-7000 and H=-10000 is applied.

Magnetic Properties of Fe Nanoparticles Synthesized by Chemical Vapor Condensation

  • Park, C. J.;Kim, B. K.;X. L. Dong
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.228-229
    • /
    • 2000
  • Magnetic Fe nanoparticles were synthesized by CVC process using Fe(CO)$\sub$5/ as precursors. The nanoparticles have core-shell structures with uniform dispersion. For the specific purposes, the micostructures as well as the magnetic states of Fe nanoparticles can be controlled by adjusting the process parameters, such as the carrier gases, the decomposition temperature, the cooling of powder, etc.

  • PDF

A Numerical Study on the Conjugate Heat Transfer inside a High Speed Motor for a Small Radial Compressor (초소형 압축기용 초고속 전동기 내부의 복합 열전달 해석)

  • Kim, T. G.;Hur, N.;Jeong, S.;Jeon, S. B.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.1 s.10
    • /
    • pp.14-21
    • /
    • 2001
  • In a small centrifugal compressor system, a high-speed motor needs to be developed to drive impellers directly. Heat is generated by both electrical heating due to copper coil resistance and aerodynamic heating in the gap between the rotor and stator in a high-speed motor. Removal of the heat is essential to the design of such motors since most magnetic materials are brittle and can be easily fractured by the heat. In the present study the cooling flow fields and temperature distributions are analyzed by using computational fluid dynamics simulation for a high-speed motor which has air cooling system as well as water cooling system. In the analysis, a conjugate heat transfer problem is solved by considering both convective heat transfer in the cooling system and conduction heat transfer in solid parts. Based on design drawings of a motor, air cooling system and water cooling system are analyzed to obtain temperature field and thus to check the coiling system performance. Also the cooling performance are studied for various flow rates of cooling air and water at the inlets.

  • PDF

A Numerical Study on the Conjugate Heat Transfer inside a High Speed Motor for a Small Radial Compressor (초소형 압축기용 초고속 전동기 내부의 복합 열전달 해석)

  • Kim, T. G.;Hur, N.;Jeong, S.;Jeon, S. B.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.351-358
    • /
    • 2000
  • In a small centrifugal compressor system, a high-speed motor needs to be developed to drive impellers directly. Heat is generated by both electrical heating due to copper coil resistance and aerodynamic heating in the gap between the rotor and stator in a high-speed motor. Removal of the heat is essential to the design of such motors since most magnetic materials are brittle and can be easily fractured by the heat. In the present study the cooling flow fields and temperature distributions were analyzed by using computational fluid dynamics simulation for a high-speed motor which has air cooling system as well as water cooling system. In the analysis a conjugate heat transfer problem is solved by considering both convective heat transfer in the cooling system and conduction heat transfer in solid parts. Based on design drawings of a motor, air cooling system and water cooling system were analyzed to obtain temperature field and thus to check the coiling system performance. Also the cooling performance are studied for various flow rates of cooling air and water at the inlets.

  • PDF

A review of Magnetic Refrigeration Technology

  • Jeong S.;Numazawa T.;Rowe A.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.8 no.2
    • /
    • pp.1-10
    • /
    • 2006
  • This paper reviews the magnetic refrigeration technology that is a novel cooling method utilizing magnetic field to obtain low temperature. The key component of the refrigeration is a novel magnetic refrigerant which should possess sufficiently large magneto-caloric effect so that a pseudo-Carnot magnetic refrigeration cycle can cover reasonably large temperature span. Otherwise, a regenerative concept should be employed to expand the temperature span of the refrigeration cycle. There is a growing interest in magnetic refrigeration as a viable refrigeration technology not only for cryogenics as well as room temperature range. This paper covers historical developments, fundamental concepts, key components, application classification, and recent research trend of magnetic refrigerators.