• Title/Summary/Keyword: Magnetic cooling

Search Result 245, Processing Time 0.031 seconds

Design of a Cooling System for a portable HTS Superconducting Magnetic Energy Storage Using a Solid Nitrogen (고체질소를 이용한 이동형 초전도 에너지 저장장치용 냉각 시스템 설계)

  • Kim, K.L.;Song, J.B.;Kim, K.J.;Lee, J.H.;Lee, H.G.;Koh, D.Y.;Kim, S.H.;Seong, K.C.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.3
    • /
    • pp.27-31
    • /
    • 2008
  • In order to cool the SMES coil to the operating temperature, conduction cooling is generally used. However, it often consumes a large amount of electric power because of it's continuous cryocooler operation. This can also lead to poor thermal stability and serious protection problems of the system. Solid nitrogen (SN2) can counter those disadvantages in the conduction cooling system because it has a large heat capacity. Particularly, a large amount of enthalpy with a minimal weight to the cold body of SN2 makes a compact and portable system by increase a recooling to recooling time period (RRTP) value. A conceptual design of the proto-type SN2 cooling system for a portable HTS superconducting magnetic energy storage (SMES) system will be introduced in this paper.

Influence of Heat Treatment on Magnetic Chracteristics of the Magnetic (열처리방법이 철의 자기특성에 미치는 영향 1)

  • Kyung Hyon Tchah
    • 전기의세계
    • /
    • v.20 no.2
    • /
    • pp.15-18
    • /
    • 1971
  • Magnetic materials in relay have been found to change in their magnetic characteristics with heat treatment. This paper describes how the magnetic characteristics of Magnetic Iron are affected by heat treatment. The materials are pot annealed and cooled from high temperature in the pot, by exposing in the atmospheres, and by quenching in the water and oil. It also studies the best heating temperature and cooling method which improve the magnetic characteristics of the Magnetic Iron.

  • PDF

FARADAY ROTATION OBSERVATIONS OF MAGNETIC FIELDS IN GALAXY CLUSTERS

  • CLARKE TRACY E.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.337-342
    • /
    • 2004
  • The presence of magnetic fields in the intracluster medium in clusters of galaxies has been revealed through several different observational techniques. These fields may be dynamically important in clusters as they will provide additional pressure support to the intracluster medium as well as inhibit transport mechanisms such as thermal conduction. Here, we review the current observational state of Faraday rotation measure studies of the cluster fields. The fields are generally found to be a few to 10 $\mu$G in non-cooling core clusters and ordered on scales of 10 - 20 kpc. Studies of sources at large impact parameters show that the magnetic fields extend from cluster cores to radii of at least 500 kpc. In central regions of cooling core systems the field strengths are often somewhat higher (10 - 40 $\mu$G) and appear to be ordered on smaller scales of a few to 10 kpc. We also review some of the recent work on interpreting Faraday rotation measure observations through theory and numerical simulations. These techniques allow us to build up a much more detailed view of the strength and topology of the fields.

Analysis of the stresses induced by magnetic field and cooling in the CICC type superconducting bus-line (CICC 형태의 초전도 버스 선에서 냉각 및 자기장에 의한 응력 해석)

  • Lee, Ho-Jin;Nam, Hyeon-Il;Kim, Gi-Baek;Hong, Gye-Won
    • Progress in Superconductivity and Cryogenics
    • /
    • v.2 no.2
    • /
    • pp.20-25
    • /
    • 2000
  • A CICC type superconducting bus-line electrically connecting a superconducting magnet to a power supply is cooled down to low temperature under the external magnetic field during operation. The thermal contraction during the cooling may be constrained by the supports which are installed to protect the bus-line from Lorenz magnetic forces. This constrained contraction causes thermal stresses in the bus-line to release thermal contraction. The minimum stress conditions in the bus-line may be optimized by controlling the supporting arrangement considering the thermal contraction and the external field. The analytical method to find optimal supports arrangement was suggested by using the beam theory, and numerical calculation using commercial code was performed to verify the suggested analytical optimization method.

  • PDF

Impact of Ba Substitution on the Magnetocaloric Effect in La1-xBaxMnO3 Manganites

  • Hussain, Imad;Anwar, M.S.;Kim, Eunji;Koo, Bon Heun;Lee, Chan Gyu
    • Korean Journal of Materials Research
    • /
    • v.26 no.11
    • /
    • pp.623-627
    • /
    • 2016
  • $La_{1-x}Ba_xMnO_3$ (x = 0.30, 0.35 and 0.40) samples have been prepared by solid-state reaction method. The X-ray diffraction (XRD) study showed that all the samples crystallized in a rhombohedral structure with an R-3c space group. Variation of the magnetization as a function of the temperature and applied magnetic field was carried out. All the samples revealed ferromagnetic to paramagnetic (FM-PM) phase transition at the Curie temperature $T_C{\sim}342K$. The magnetic entropy change was also studied through examination of the measured magnetic isotherms M(H, T) near $T_C$. The magnetocaloric effect was calculated in terms of the isothermal magnetic entropy change. The maximum entropy change reaches a value of 1.192 J/kgK under a magnetic field change of 2.5T for the $La_{0.6}Ba_{0.4}MnO_3$ composition. The relative cooling power (RCP) is 79.31 J/kg for the same applied magnetic field.

Analysis of transmission efficiency of the superconducting resonance coil according the materials of cooling system

  • Lee, Yu-Kyeong;Hwang, Jun-Won;Choi, Hyo-Sang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.46-49
    • /
    • 2016
  • The wireless power transfer (WPT) system using a magnetic resonance was based on magnetic resonance coupling of the transmission and the receiver coils. In these system, it is important to maintain a high quality-factor (Q-factor) to increase the transmission efficiency of WPT system. Our research team used a superconducting coil to increase the Q-factor of the magnetic resonance coil in WPT system. When the superconductor is applied in these system, we confirmed that transmission efficiency of WPT system was higher than normal conductor coil through a preceding study. The efficiency of the transmission and the receiver coil is affected by the magnetic shielding effect of materials around the coils. The magnetic shielding effect is dependent on the type, thickness, frequency, distance, shape of materials. Therefore, it is necessary to study the WPT system on the basis of these conditions. In this paper, the magnetic shield properties of the cooling system were analyzed using the High-Frequency Structure Simulation (HFSS, Ansys) program. We have used the shielding materials such as plastic, aluminum and iron, etc. As a result, when we applied the fiber reinforced polymer (FRP), the transmission efficiency of WPT was not affected because electromagnetic waves went through the FRP. On the other hand, in case of a iron and aluminum, transmission efficiency was decreased because of their electromagnetic shielding effect. Based on these results, the research to improve the transmission efficiency and reliability of WPT system is continuously necessary.

The Magnetic Characteristics and Microstructure of Mn-A1 System Alloys(1st Report) -Focused on the Mn-A1 Alloys- (Mn-Al계 합금의 열처리에 따른 미세조직 변화와 지기적 특성(제1보) -Mn-Al-Cu 합금을 중심으로-)

  • Pang, Man-Gyu;Yang, Hyun-Soo;Kwak, Chang-Sup
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.4
    • /
    • pp.48-58
    • /
    • 1988
  • This study was undertaken to observe the formation behavior of ferro- magnetic phase in Mn-Al-Cu Alloys. The alloy selected for this investigation was 70% Mn-29% Al-1% Cu. This pre-allyed pig was prepared to the cylinderical castings using an Induction furnace after homogenizing at $1100^{\circ}C$ for 2hr, the specimens were cooled by cooling methods. Subwequent isothermal heat treatments were followed at $550^{\circ}C$ for various periods of time at predetermined(1-1000min). The formation behavior of ferromagnetic phase was investigated by measurements of magnetic properties of the specimens at each stage of heat treatment, and optical microscopic esamination and X-Ray diffraction analyses were also employed. By this basic experimental results, the conclusions are as follows 1) In order to obtain much amount of ferromagnetic phase, the optimum average cooling rate was about 7.35-$16.4^{\circ}C$/sec($1100^{\circ}C$-$600^{\circ}C$). 2) We verified the decomposition of {\tau} phase to {\beta} -Mn and {\gamma} , as the specimens were homogenized at $1100^{\circ}C$ for 12hr, then heat-treased at $550^{\circ}C$ for 1-1000min. 3) A condition of optimum heat treatments in Mn-Al-Cu permanent mag-netic alloys showed that after homogenizing at $1100^{\circ}C$ for 2hr, the speciments were cooled in air or furnace(A) and subsequent heat treatments at $550^{\circ}C$ for 1-30min. The maximum magnetic properties were measured as follows: Air cooling; Br=1200(Gause), bHc=100(oe), (BH)max=0.07(MGOe) Furnace cooling(A);Br=950(Gauss), bhe=80(Oe), (BH)max=0.05(MGOe)

  • PDF

MAGNETIC CURTAILMENT OF THE SHOCK-INDUCED THERMAL INSTABILITY

  • Hong, Seung-Soo;Koo, Bon-Chul
    • Journal of The Korean Astronomical Society
    • /
    • v.17 no.2
    • /
    • pp.115-125
    • /
    • 1984
  • Effect of magnetic field on the thermal instability is studied in the radiatively cooling region behind an interstellar shock of moderate propagation velocity (${\sim}10\;km/sec$). It is shown that the presence of interstellar magnetic field of a few micro gauss is very effective in preventing the thermal instability from building-up density concentration. In the absence of magnetic field, the shock-induced thermal instability amplifies preshock density inhomogeneity by more than an order of magnitude. However, in the presence of magnetic field, the amplified density contrast is shown to be only a factor 2.

  • PDF