• 제목/요약/키워드: Magnetic analysis

검색결과 4,710건 처리시간 0.033초

10 MW급 초전도 풍력발전기 계자코일 전자장 해석 (Magnetic Field Analysis of the Field Coil for 10 MW Class Superconducting Wind Turbines)

  • 김지형;박사일;김호민
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제14권3호
    • /
    • pp.18-22
    • /
    • 2012
  • This paper presents the magnetic field analysis of the racetrack double pancake field coil for the 10 MW class superconducting wind turbine which is considered to be the next generation of wind turbines using the 3 Dimensional FEM(Finite Elements Method). Generally, the racetrack-shaped field coil which is wound by the second generation(2G) superconducting wire in the longer axial direction is used, because the racetrack-shaped field coil generates the higher magnetic field density at the minimum size and reduces the synchronous reactance. To analysis the performance of the wind turbines, It is important to calculate the distribution of magnetic flux density at the straight parts and both end sections of the racetrack-shaped high temperature superconductivity(HTS) field coil. In addition, Lorentz force acting on the superconducting wire is calculated by the analysis of the magnetic field and it is important that through this way Lorentz force can be used as a parameter in the mechanical analysis which analyzes the mechanical stress on the racetrack-shaped field coil.

유한요소법을 이용한 자기센서용 자속집속기의 해석 (Analysis of Magnetic Concentrator of Magnetic Sensor by Using Finite Element Method)

  • 신광호
    • 한국자기학회지
    • /
    • 제23권3호
    • /
    • pp.89-93
    • /
    • 2013
  • 본 연구에서는 홀센서의 감도를 높이기 위해 사용되는 자속집속기의 두께, 홀소자와의 상대적 위치, 모서리 형상에 따르는 발생 자계를 유한요소법을 이용하여 계산하였다. 자속집속기의 두께가 얇을수록 발생 자계가 커지는 것을 알 수 있었고, 이 경향은 반자계를 고려한 겉보기 상대투자율의 두께의존성과 유사하다는 것을 알 수 있었다. 홀소자와의 상대적 위치에 따라 최대의 자계를 발생시키는 자속집속기의 최적의 두께가 변화하는 것을 알 수 있었다. 자속집속기와 홀소자의 간격이 가까울 경우, 자속집속기의 모서리 형상에 경사가 없는 것이 유리하지만, 자속집속기와 홀소자의 간격이 멀어질수록 자속집속기의 모서리를 경사지게 하는 것이 유리하다는 것을 알 수 있었다.

유한요소법을 이용한 Arc로의 자기장분포 해석연구 (Magnetic Field Analysis of Arc Furnace Using FEM)

  • 김찬욱;임종인
    • 한국재료학회지
    • /
    • 제11권12호
    • /
    • pp.1091-1095
    • /
    • 2001
  • Finite element analysis showed that strong magnetic fields were distributed around the arc furnace where the strongest magnetic field was generated around the three phase cables, and followed by the electrodes and the mast arm in decreasing order. Magnetic field decay patterns around the arc furnace could be fitted by introducing exponential formula,$Y=Y_0+Ae^{\frac-{x}{t}}$. These results showed that magnetic field intensities around the arc furnace could be estimated at any 3-dimensional positions using the finite element method (FEM).

  • PDF

유한 요소법과 이차원 텐서를 이용한 회전자계의 특성 해석 (Analysis of the Rotational Magnetic Field using the FEM and the 2-Dimensional Permeability Tensor)

  • 이창환;김홍규;정현교;홍선기
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.169-171
    • /
    • 1996
  • Recently, the finite element analysis(FEM) using two dimensional magnetic permeability tensor was introduced to calculate the magnetic field considering the rotational hysteresis. We obtain the tensor matrix from the measured data using two-dimensional magnetic measuring apparatus. We calculate the induced magnetic flux density and the rotational hysteresis loss under the model with the same condition with the measuring apparatus. Therefore we show that FEM with tensor can be used to calculate the magnetic flux density and the rotational hysteresis loss in the arbitrary rotational magnetic field.

  • PDF

흡인식 자기 부상 시스템을 위한 전자석의 모델링 및 해석 (Modeling and Analysis of Electromagnets for Magnetic Suspension System)

  • 이상헌;백윤수
    • 한국정밀공학회지
    • /
    • 제20권5호
    • /
    • pp.180-188
    • /
    • 2003
  • In the precision motion device, the frictional problem by mechanical friction causes serious effects on the system performance. Various researches have been executed to solve this problem, but classical fluid lubrication method has some disadvantages in precision motion under clean environment. Therefore, the magnetic bearing and contact-free systems have been focused on with its pollution-free characteristics. In this paper, we treat modeling and analysis of electromagnets not only for magnetic bearing but also fer contact-free electromagnetic actuators. Three types of electromagnet for various applications are modeled and analyzed by magnetic circuit theory and the validity is verified by experiments.

자기등가회로법에 의한 유도전동기 과도상태해석 (An analysis of transient state for induction motor by using the magnetic equivalent circuit method)

  • 정종호;이은웅;조현길;김준호;이화수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.18-20
    • /
    • 2002
  • In this paper, the construction elements of the induction motor was represented by the magnetic tube. The magnetic tube is basis of the magnetic equivalent circuit. The magnetic equivalent circuit method is convenient of complicated analysis of the transient state of the induction motor. Because the method is restriction on only one direction of magnetic flux. Air gap magnetomotive force was calculated by magnetic equivalent circuit method. Starting transient torque and phase current of the induction motor was confirmed by the theoretical calculation and the experiments.

  • PDF

Magnetic Field Analysis of the Electrode Arc Furnace in Steel Making Foundries

  • Kim, C.W.;Im, J.I.
    • Journal of Magnetics
    • /
    • 제8권2호
    • /
    • pp.79-84
    • /
    • 2003
  • Finite element analysis showed that strong magnetic fields were distributed around the arc furnace where the strongest magnetic fields were generated around the three phase cables. The second and third strongest fields near the arc furnace were found to be generated around the electrodes and the mast-arms, respectively. The generated field intensities were greatly influenced by the mast arm structure of the arc furnace as well as the phase differences and operation currents of the supplied power, Magnetic field decay patterns around the arc furnace could be smoothly fitted by this equation of exponential formula, H=H$0_$+Ae$^{\frac{r}{t}}$. These results revealed that magnetic field intensities around the arc furnace could be estimated at any 3-dimensional position using finite element method (FEM).

Electron Holography of Advanced Nanomaterials

  • Shindo, D.;Park, H.S.;Kim, J.J.;Oikawa, T.;Tomita, T.
    • Applied Microscopy
    • /
    • 제36권spc1호
    • /
    • pp.63-69
    • /
    • 2006
  • By utilizing a field emission gun and a biprism installed on a transmission electron microscope (TEM), electron holography is extensively carried out to visualize the electric and magnetic fields of nanomaterials. In the electric field analysis, the distribution of electric potential in a sharp tip made of W coated with $ZrO_2$ is visualized by applying the voltage to the tip. Denser contour lines due to the electric potential are observed with an increase in the bias voltage. In the magnetic field analysis by producing the strong magnetic field with a sharp magnetic needle made of a permanent magnet, the in situ experiment is carried out to investigate the magnetization of hard magnetic materials. The results of these experiments clearly demonstrate that electron holography is a promising advanced transmission electron microscopy technique to characterize the electric and magnetic properties of nanomaterials.

연삭기용 자기베어링 주축계의 고속화에 관한 연구 (Design of a Magnetic Bearing System for a High Speed Grinding Spindle)

  • 박종권;노승국;안대균
    • 한국정밀공학회지
    • /
    • 제15권11호
    • /
    • pp.233-243
    • /
    • 1998
  • The demand of high speed machining is increasing due to the high speed cutting and grinding provides high efficiency of process, short process time, improved metal removal capacity and better surface finish. Active magnetic bearings allow much high surface speed than conventional ball bearings and therefore greatly suitable for high speed cutting or grinding. This paper describes a design process of an active magnetic bearing system for a high speed grinding spindle with power 5.5kW and maximum speed 60,000rpm. Magnetic actuators are designed by the magnetic circuit theory considering static load condition, and examined with FEM analysis. Dynamic characteristics are also considered, such as bandwidth, stiffness, natural frequency and static deflection. System characteristics are simulated with a rigid rotor model.

  • PDF