• Title/Summary/Keyword: Magnetic actuators

Search Result 132, Processing Time 0.028 seconds

Development of a Non-contact Type Magnetic Signal Monitoring Equipment for Automotive Electric Devices (비접촉식 자동차 전장용 자기신호 측정 장치)

  • Yang, Hyong-Yeol;Yang, Seung-Hak
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.381-386
    • /
    • 2010
  • A non-contact type magnetic signal monitoring equipment for automotive electric devices is proposed in this paper. There are many kinds of actuators in the car like solenoid, relay, motor, injector, etc which are operated by magnetic energy. It is difficult to find out whether the actuators operate well or not because the terminals of the actuators are combined to the connectors. In this paper a non-contact type magnetic signal monitoring equipment using Hall effect sensor is proposed to measure the magnetic signal of the actuators very easily to find out the actuators' operating status. The simulation and experimental results show that the developed equipment is very useful and has good performance.

Magneto-Mechatronics : A New Approach to Sensors and Actuators for Next-Generation Biomedical and Rehabilitation Devices (자기 메카트로닉스 : 차세대 의공학 및 재활 기기 개발을 위한 센서와 액추에이터의 새로운 접근방법)

  • Yu, Chang Ho;Kim, Sung Hoon
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.3
    • /
    • pp.229-236
    • /
    • 2016
  • Magnetic sensors and actuators have been widely used in industry and medical fields. Integrated systems based on sensors and actuators are defined as mechatronics that is the general combination of mechanics and electronics. Recently, magnetic wireless sensors and actuators have been developed and used at a systematic level. In particular, their mechanisms depend on magnetic, such as magnetic material and physical phenomena. However, their research boundary has not been clear. Researchers talk of magnetic micro-robots, magnetic actuators and sensors. Therefore, a new and correct definition is required. In this study, we introduce the advanced and extended concept of mechatronics, which is a magneto-mechantronics for biomedical and rehabilitation. Among various applications, we focused on wireless pump and sensing system for blood vessel rehabilitation and local motion capture, respectively.

Magnetic Sensors and Actuators

  • Pasquale, M.
    • Journal of Magnetics
    • /
    • v.8 no.1
    • /
    • pp.60-69
    • /
    • 2003
  • A review of mechanical sensing techniques based on magnetic methods is presented, with special reference to magnetoelastic strain gauges and force sensors. A novel strain sensor based on soft amorphous ribbons is described. Other types of magnetic sensors, for the measurement of torque and displacement are briefly discussed. An overview of magnetic actuators based on giant magnetostrictive materials, with some practical examples, is presented. Recent advances in the development and application of magnetic shape memory materials are discussed, together with the analysis of recent studies for the description of magnetic shape memory phenomena.

The Design and Performance Verification of Collocated Capacitance Sensor for Magnetic Bearing (자기베어링과 공위한 축전센서의 설계 및 성능 평가)

  • 유선중;신동원;김종원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.317-322
    • /
    • 1994
  • The design and performance verification of collocated capacitance sensor system for magnetic bearing is presented. Noncollocation between actuators and sensors may cause unstable rotor behavior. The capacitance sensor is not affected by magnetic field. PCB type capacitance sensor is installed between magnetic bearing polse. so, collocation of sensors and actuators can be achieved. Experiment of sensor's static and dynamic charactistics is conducted. Modeling of the rotor system supported by magnetic bearing is made. And performance comparison between simulation and experiment is showed.

  • PDF

Study on the Linear Air Bearing Stage with Actively Controllable Magnetic Preload (초정밀 스테이지를 위한 능동형 자기예압 공기베어링에 관한 연구)

  • Ro S.K.;Park C.H.;Kim S.H.;Kwak Y.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.135-136
    • /
    • 2006
  • A precise linear motion stage supported by magnetically preloaded air bearings is introduced where preloading magnetic actuators are combined with permanent magnets and coils to adjust air bearing clearance by controlling magnetic force actively. Each of the magnetic actuators has a permanent magnet generating nominal magnetic flux for required preload and a coil to perturb the magnetic force resulting adjustment of air-bearing clearance. The characteristics of porous aerostatic bearing are analyzed by numerical analysis, and analytic magnetic circuit model is driven for magnetic actuator to calculate nominal preload and variation of force due to current. A 1-axis linear stage motorized with a coreless linear motor and a linear encoder is built for verifying this design concept. With the active magnetic preloading actuators controlled with DSP board and PWM power amplifiers, the active on-line adjusting tests about the vertical, pitching and rolling motion were performed, and the result shows very good linearity.

  • PDF

Recent Advances in Soft Magnetic Actuators and Sensors using Magnetic Particles (자성 분말 기반 소프트 자성 액츄에이터 및 센서 연구 동향)

  • Song, Hyeonseo;Lee, Hajun;Kim, Junghyo;Kim, Jiyun
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.509-517
    • /
    • 2021
  • Smart materials capable of changing their characteristics in response to stimuli such as light, heat, pH, and electric and magnetic fields are promising for application to flexible electronics, soft robotics, and biomedicine. Compared with conventional rigid materials, these materials are typically composed of soft materials that improve the biocompatibility and allow for large and dynamic deformations in response to external environmental stimuli. Among them, smart magnetic materials are attracting immense attention owing to their fast response, remote actuation, and wide penetration range under various conditions. In this review, we report the material design and fabrication of smart magnetic materials. Furthermore, we focus on recent advances in their typical applications, namely, soft magnetic actuators, sensors for self-assembly, object manipulation, shape transformation, multimodal robot actuation, and tactile sensing.

Study of Various Winding Topologies for Self-Shielding Induction Cookers

  • Auvigne, Christophe;Copt, Florian;Winter, Christophe;Perriard, Yves
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.4
    • /
    • pp.375-379
    • /
    • 2013
  • In this paper, the magnetic coupling between an induction cooker and a metallic pot is studied for various winding topologies. Effects of the winding orientation on the power transfer capability and on the emitted magnetic field under the cooker are discussed and compared. A novel topology inspired by permanent magnet Halbach array is proposed. This consists in coupling in both horizontal and vertical directions and to create an asymmetric field in order to reduce the emission under the cooker.

Soft Robots Based on Magnetic Actuator (자성 액추에이터 기반의 소프트 로봇)

  • Nor, Gyu-Lyeong;Choi, Moon Kee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.401-415
    • /
    • 2021
  • Soft robots are promising devices for applications in drug delivery, sensing, and manufacturing. Traditional hard robotics are manufactured with rigid materials and their degrees of motion are constrained by the orientation of the joints. In contrast to rigid counterpart, soft robotics, employing soft and stretchable materials that easily deforms in shape, can realize complex motions (i.e., locomotion, swimming, and grappling) with a simple structure, and easily adapt to dynamic environment. Among them, the magnetic actuators exhibit unique characteristics such as rapid and accurate motion control, biocompatibility, and facile remote controllability, which make them promising candidates for the next-generation soft robots. Especially, the magnetic actuators instantly response to the stimuli, and show no-hysteresis during the recovery process, essential for continuous motion control. Here, we present the state-of-the-art fabrication process of magnetically controllable nano-/micro-composites, magnetically aligning process of the composites, and 1-dimensional/multi-dimensional multimodal motion control for the nextgeneration soft actuators.

Stability Analyses of Magnetic Levitation Tables Using Repulsions of Permanent Magnets (영구자석에 의한 반발형 자기부상 테이블의 안정성 해석)

  • Choe, Gi-Bong;Jo, Yeong-Geun;Tadahiko Shinshi;Akira Shimokohbe
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.7
    • /
    • pp.36-42
    • /
    • 2002
  • This paper presents two actuators for levitation using repulsions of permanent magnet and two magnetic levitation tables using the actuators. Here, one actuator for levitation consists of one fixed magnet and one moving magnet, and the other actuator consists of two fixed magnets and one moving magnet. The moving part of the magnetic levitation table contains the moving magnets. repulsive forces caused by the permanent magnets are linearized, and then the equation of motion of the moving part of the table is derived. Using the equation of motion, stability conditions of the moving part are deduced. The stability conditions are analyzed for positional relations of the moving magnets and the minimum number of active control required for stable system. As a result, in the each case of magnetic levitation tables, the requirements for stabilization are expressed by the positional relations and the number of the active controls.

Active control of flow over a sphere using electro-magnetic actuators (전자석 액츄에이터를 이용한 구 주위의 유동제어)

  • Park, Jin-Il;Choi, Hae-Cheon;Jeon, Woo-Pyung
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.497-501
    • /
    • 2000
  • Flow over a sphere is controlled experimentally at $Re=10^5$ using electro-magnetic actuators. The electro-magnetic actuator developed in this study is composed of the permanent magnet electro-magnet membrane and slot. Eight actuators are placed inside the sphere at equally spaced intervals on a latitudinal plane and the position of the control slot is 76 from the stagnation point. Each actuator generates a periodic blowing and suction through the slot at variable frequencies of $10{\sim}140Hz$ and variable amplitudes by controlling electric signals applied to the electro-magnet. Drag on the sphere measured using a load cell is significantly reduced with control at the forcing frequencies larger than the natural shedding frequency $({\approx}14Hz\;at\;Re=10^5)$, whereas drag is slightly increased at the forcing frequency of 10Hz. It is shown from pressure measurement that the static pressure in the rear surface of the sphere is significantly increased with control, indicating that the separation is delayed due to control. Flow visualizations also show that the detaching shear layer is more attracted to the sphere center with control, the separation bubble size is significantly reduced, and motion inside the bubble is very weak, as compared to the case of uncontrolled flow.

  • PDF