• Title/Summary/Keyword: Magnetic Storage System

Search Result 225, Processing Time 0.031 seconds

Research and Development of Superconducting Magnetic Energy Storage system(SMES)

  • Isojima, Shigeki
    • Electrical & Electronic Materials
    • /
    • v.11 no.10
    • /
    • pp.40-45
    • /
    • 1998
  • This paper describes a collaborative work between SEI and KEPCO on the Superconducting Magnetic Energy Storage system (SMES). We have studied two types of magnets. One is the 400kJ class LTS-SMES for testing the power stabilization operated at liquid helium temperature (4.2K) and the other is the 100J class HTS-SMES for confirming the possibility of applying HTS wire to SMES at liquid nitrogen temperature (77k). In this paper, the design of the magnet and the test results are described. Each magnet performed completely at rated operation.

  • PDF

A Study on the Design Procedure of the Eight Pole Magnetic Bearings for the Inner-rotor and the Outer-rotor Type

  • Lee, Jun-Ho;Park, Chan-Bae;Lee, Byung-Song;Lee, Su-Gil;Kim, Jae-Hee;Jung, Shin-Myung;Lee, Hyung-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1424-1430
    • /
    • 2013
  • This paper presents design procedure of the magnetic bearings used for high-speed electric machines and flywheel energy storage systems. Magnetic bearing can be categorized by inner-rotor type and outer-rotor type according to the position of the rotary disc. These two types are applicable based on application environments such as application space, required attraction force, and controllability. Magnetic bearing is generally designed based on the ratio (geometrical coefficient or geometrical efficiency) of pole width to rotor journal radius but proper ratio is only decided by the analysis. This is the difficulty of the magnetic bearing design. In this paper, proper design technology of the inner-rotor type and outer-rotor-type eight pole magnetic bearings is introduced and compared with the FEM analysis results, which verifies the proposed design procedure is suitable to be applied to the design of the magnetic bearings for the industrial applications and flywheel energy storage system.

Bearing Modeling of Superconducting Magnetic Bearings-Flywheel System (초전도 자기베어링-플라이휠 시스템의 베어링 모델링)

  • 김정근;이수훈
    • Journal of KSNVE
    • /
    • v.9 no.5
    • /
    • pp.891-898
    • /
    • 1999
  • The purpose of Superconducting Magnetic Bearing Flywheel Energy Storage System (SMB-FESS) is to store unused nighttime electricity until it is needed during daytime. An analytical model of the SMB-FESS is necessary to identify the system behavior. At first, we have to model the superconducting magnetic bearing. Modeling the SMB is same as estimating the bearing parameter. The theoretical modal parameter is calculated through the equation of motion and the experimental modal parameter is estimated through the impact testing (modal testing). The bearing parameter is searched by using the non-linear least square method until the theoretical result corresponds to the experimental result. The suggested modeling method is verified by comparing experimental and analytical frequency response function.

  • PDF

Experimental Estimation on Magnetic Friction of Superconductor Flywheel Energy Storage System

  • Lee, Jeong-Phil;Han, Sang-Chul;Park, Byeong-Choel
    • Journal of Magnetics
    • /
    • v.16 no.2
    • /
    • pp.124-128
    • /
    • 2011
  • This study estimated experimentally the loss distribution caused by magnetic friction in magnetic parts of a superconductor flywheel energy storage system (SFES) to obtain information for the design of high efficiency SFES. Through the spin down experiment using the manufactured vertical shaft type SFES with a journal type superconductor magnetic bearing (SMB), the coefficients of friction by the SMB, the stator core of permanent magnet synchronous motor/generator (PMSM/G), and the leakage flux of the metal parts were calculated. The coefficients of friction by the stator core of PMSM/G in case of using Si-steel and an amorphous core were calculated. The energy loss by magnetic friction in the stator core of PMSM/G was much larger than that in the other parts. The level of friction loss could be reduced dramatically using an amorphous core. Energy loss by the leakage magnetic field was small. On the other hand, the energy loss could be increased under other conditions according to the type of metal nearby the leakage magnetic fields. In manufactured SFES, the rotational loss by the amorphous core was approximately 2 times the loss of the superconductor and leakage. Moreover, the rotational loss by the Si-steel core is approximately 3~3.5 times the loss of superconductor and leakage.

A Study on the Design, Fabrication and Characteristics Test of 25KJ Superconducting Magnetic Energy Storage (25KJ 초전도 에너지 저장장치의 설계,제작 및 특성 시험)

  • 홍원표;원종수;이송엽;이승원
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.10
    • /
    • pp.683-693
    • /
    • 1988
  • For the economical and reasonable operation of electric power system according to continual increase of electric power demand and decrease of load factor, the potential application of superconducting magnertic energy storage [SMES] with high efficiency and fast response in the electric utility is receiving attractive attension. In the light of this background, to confirm the basic principle of SMES, theoretical study, design technique and fabrication procedure for superconducting coil, current lead, cryostat, measuring and protection system of SMES are described in detail. Especially, a new design technique for superconducting coil and current lead is porposed and it was proved experimentally by the performance test of SMES which is developed for the first time in our country. At the peak operating current 200A, the maximum magnetic field amd stored energy of the coil are 3.52T and 2500J, espectively. The thermal and mechanical stability of 2500J SMES is also confirmed experimetally by its characteristics test, AC loss, protection system, charge and discharge test. The experimetal results show good characteristics of energy storage system.

  • PDF

A New Approach to Servo System Design in Hard Disk Drive Systems

  • Kim, Nam-Guk;Choi, Soo-Young;Chu, Sang-Hoon;Lee, Kang-Seok;Lee, Ho-Seong
    • Transactions of the Society of Information Storage Systems
    • /
    • v.1 no.2
    • /
    • pp.137-142
    • /
    • 2005
  • In this paper, we propose a new servo system design strategy to reduce the position error signal(PES) and track mis-registration(TMR) in magnetic disk drive systems. The proposed method provides a systematic design procedure based on the plant model and an optimal solution via an optimization with a 'Robust Random Neighborhood Search(RRNS)' algorithm. In addition, it guarantees the minimum PES level as well as stability to parametric uncertainties. Furthermore, the proposed method can be used to estimate the performance at the design stage and thus can reduce the cost and time for the design of the next generation product. The reduction of PES as well as robust stability is demonstrated by simulation and experiments.

  • PDF

Development of Flywheel Energy Storage System (플라이휠에 의한 에너지 저장 장치 개발)

  • Kim, W.H.;Kim, J.S.;Rim, G.H.
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.1924-1926
    • /
    • 1997
  • With the development of power electronics, many new energy storage systems such as the superconducting magnetic energy storage, the flywheel energy storage, and the capacitive energy storage, etc. are being intensively studied recently in order to replace battery in some special applications, Among these innovative energy storage systems, the flywheel system exhibits some unique features such as high power density, easy maintenance and longer lifetime. This paper introduces the novel flywheel energy storage system. Operation and features of the system are illustrated and verified on a 6kVA, 20kHz IPM based experimental circuit for O/A application. The Halbach Array Motor is selected of the design of the three phase motor/generator for the flywheel energy storage system.

  • PDF

Experimental Evaluation of Superconductor Flywheel Energy Storage System with Hybrid Type Active Magnetic Bearing (하이브리드 AMB를 포함한 초전도 플라이휠 에너지 저장장치의 실험평가)

  • Lee, J.P.;Kim, H.G.;Han, S.C.
    • Progress in Superconductivity
    • /
    • v.13 no.3
    • /
    • pp.195-202
    • /
    • 2012
  • In this paper, we designed Active Magnetic Bearing (AMB) for large scale Superconductor Flywheel Energy Storage System (SFESS) and PD controller for AMB. And we experimentally evaluated SFESS including hybrid type AMB. The radial AMB was designed to provide force slew rate that was sufficient for the unbalance disturbances at the maximum operating speed. The thrust AMB is a hybrid type where a permanent magnet carries the weight of the flywheel and an electromagnetic actuator generates the dynamic control force. We evaluated the design performance of the manufactured AMB through comparison of FEM analysis and the results of experimental force measurement. In order to obtain gains of PD controller and design a notch filter, the system identification was performed through measuring frequency response including dynamics for the AMBs, a power amp and a sensor using a sine swept test method after levitating the flywheel. Through measuring the current input of the AMBs and the orbit of a flywheel according to rotational speed, we verified excellent control performance of the AMBs with small amount current for the large scale SFESS.

Nanoinjection Molding Process with Passive Heating System for Patterned Magnetic Media (패턴드 미디어 제작을 위한 나노 사출성형 공정에 관한 연구)

  • Choi, Eui-Sun;Lee, Nam-Seok;Han, Jeong-Won;Kim, Young-Joo;Kang, Shin-Ill
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.3
    • /
    • pp.149-153
    • /
    • 2007
  • Perpendicular patterned magnetic media have been regarded as a prime candidate to achieve an ultra-high magnetic recording density of over 1 Tera-bits/$inch^2$. Patterned magnetic media with nanoscale patterns have been fabricated using various nanopatterning technologies. We focused on the two technical issues of nanoinjection molding technology. Firstly, we have investigated a cost-effective method to fabricate metallic stamps. Secondly, we focused on the analysis of nanoinjection molding with passive heating, where the replication of 50 nm nanopillar arrays was successful. The effect of the thermal insulation layer on the replication quality was examined by analytical and experimental methods. Finally, we deposited a magnetic layer on a injection molded nanopillars and measured. Our methodology can provide cost-effective mass-production for patterned magnetic media.

  • PDF

Design and Construction of 35 kWh Class Superconductor Flywheel Energy Storage System Main Frame (35 kWh급 초전도 플라이휠 에너지 저장 시스템 프레임 설계 및 제작)

  • Jung, S.Y.;Han, Y.H.;Park, B.J.;Han, S.C.
    • Progress in Superconductivity
    • /
    • v.13 no.1
    • /
    • pp.52-57
    • /
    • 2011
  • A superconductor flywheel energy storage system (SFES) is an electro-mechanical battery which transforms electrical energy into mechanical energy for storage, and vice versa. The 35 kWh class SFES is composed of a main frame, superconductor bearings, electro-magnetic dampers, a motor/generator, and a composite flywheel. The energy storing capacity of the SFES can be limited by the operational speed range of the system. The operational speed range is limited by many factors, especially the resonant frequency of the main frame and flywheel. In this study, a steel frame has been designed and constructed for a 35 kWh class SFES. All the main parts, their housings, and the flywheel are aligned and assembled on to the main frame. While in operation, the flywheel excites the main frame, as well as all the parts assembled to it, causing the system to vibrate at the rotating speed. If the main frame is excited at its resonant frequency, the system will resonate, which may lead to unstable levitation at the superconductor bearings and electro-magnetic dampers. The main frame for the 35 kWh class SFES has been designed and constructed to improve stiffness for the stable operation of the system within the operational speed range.