• Title/Summary/Keyword: Magnetic Stimulation Therapy

Search Result 68, Processing Time 0.022 seconds

Effects of Repetitive Transcranial Magnetic Stimulation on Upper Extremity Function and Activities of Daily Living in Acute Stroke Patients (반복 경두개 자기 자극이 급성기 뇌졸중 환자의 팔 기능과 일상생활 수행능력에 미치는 영향)

  • Jung-Hee Won;Kyeong-Mi Kim;Moon-Young Chang
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.4
    • /
    • pp.167-175
    • /
    • 2023
  • Purpose : The study aim was to apply high-frequency repetitive transcranial magnetic stimulation to and investigate the effects on upper extremity function and activities of daily living. Methods : This study was conducted at Hospital D in U City from April to June 2018. Thirty-two patients diagnosed with stroke according to prior research criteria were selected and divided into two groups. Sixteen people in the experimental group received high-frequency repetitive transcranial magnetic stimulation and traditional occupational therapy, and sixteen people in the received sham stimulation and traditional occupational therapy. Both groups received 20 minutes of transcranial magnetic stimulation and 30 minutes of traditional occupational therapy per session, five times per week, for a total of 10 sessions over two weeks. Upper extremity functional evaluation, MFT and activities of daily living (Korean Version of the Modified Barthel Index, K-MBI) were conducted before and after the intervention, and an independent t test was used to confirm the effects of the intervention. Results : No statistically significant difference between the aforementioned groups' MFT and K-MBI scores was noted before the intervention. After the intervention, however, a statistically significant difference was found in K-MBI scores (p<.001). Additionally, after the intervention, a significant difference between the groups' MFT scores was found (p<.05). Conclusion : The results of this study showed that the combination of high-frequency repetitive transcranial magnetic stimulation and occupational therapy was effective in recovering upper extremity function and activities of daily living in patients diagnosed with acute stroke.

Effects of Motor Imagery Practice in Conjunction with Repetitive Transcranial Magnetic Stimulation on Stroke Patients

  • Ji, Sang-Goo;Cha, Hyun-Gyu;Kim, Ki-Jong;Kim, Myoung-Kwon
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.181-184
    • /
    • 2014
  • The aim of the present study was to examine whether motor imagery (MI) practice in conjunction with repetitive transcranial magnetic stimulation (rTMS) applied to stroke patients could improve theirgait ability. This study was conducted with 29 subjects diagnosed with hemiparesis due to stroke.The experimental group consisted of 15 members who were performed MI practice in conjunction with repetitive transcranial magnetic stimulation, while the control group consisted of 14 members who were performed MI practice and sham therapy. Both groups received traditional physical therapy for 30 minutes a day, 5 days a week, for 6 weeks; additionally, they received mental practice for 15 minutes. The experimental group was instructed to perform rTMS and the control group was instructed to apply sham stimulation for 15 minutes. Gait analysis was performed using a three-dimensional motion capture system, which is a real-time tracking device that delivers data via infrared reflective markers using six cameras. Results showed that the velocity, step length, and cadence of both groups were significantly improved after the practice (p<0.05). Significant differences were found between the groups in velocity and cadence (p<0.05) as well as with respect to the change rate (p<0.05) after practice. The results showed that MI practice in conjunction with rTMS is more effective in improving gait ability than MI practice alone.

The Effects of Repetitive Transcranial Magnetic Stimulation on the Gait of Acute Stroke Patients

  • Ji, Sang-Goo;Kim, Myoung-Kwon
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.129-132
    • /
    • 2015
  • The aim of the present study was to examine whether repetitive transcranial magnetic stimulation (rTMS) can improve gait ability of acute stage stroke patients. This study was conducted with 39 subjects who were diagnosed as having a hemiparesis due to stroke. The experimental group included 20 subjects who underwent repetitive transcranial magnetic stimulation and the control group included 19 subjects who underwent sham therapy. The stroke patients in the experimental group underwent conventional rehabilitation therapy and rTMS was applied daily to the hotspot of the lesional hemisphere. The stroke patients in the control group underwent sham rTMS and conventional rehabilitation therapy. Participants in both groups received therapy five days per week for four weeks. Temporospatial gait characteristics, such as stance phase, swing phase, step length in affected side, velocity, and cadence, were assessed before and after the four week therapy period. A significant difference was observed in post-treatment gains for the step length in the affected side, velocity, and cadence between the experimental group and control group ( p < 0.05). However, no significant differences were observed between the two groups on stance phase and swing phase ( p > 0.05). We conclude that rTMS may be beneficial in improving the effects of acute stage stroke on gait ability.

The Effects of Repetitive Transcranial Magnetic Stimulation Integrated Mirror Therapy on the Gait of Chronic Stroke Patients

  • Cha, Hyun-Gyu;Kim, Myoung-Kwon
    • Journal of Magnetics
    • /
    • v.20 no.2
    • /
    • pp.133-137
    • /
    • 2015
  • This study was conducted to determine the effects of repetitive transcranial magnetic stimulation (rTMS) integrated mirror therapy on the gait of post-stroke patients. Thirty patients who were six months post-stroke were assigned to either the experimental group (n = 15) or the control group (n = 15). Stroke patients in the experimental group underwent rTMS and mirror therapy for the lower limbs, while those in the control group underwent rTMS and sham therapy. Participants in both groups received therapy five days per week for four weeks. A significant difference in post-training gains for the single support phase, step length, stride length and velocity was observed between the experimental group and the control group (p < 0.05). The experimental group showed a significant increment in the single support phase, step length, stride length, swing phase, velocity, cadence, double support phase and step width as compared to pre-intervention (p < 0.05). The control group showed a significant increment in step length, velocity, cadence and step width compared to preintervention (p < 0.05). Further investigation of the availability and feasibility of rTMS integrated mirror therapy for post-stroke patients as a therapeutic approach for gait rehabilitation is warranted.

Starting Current Application for Magnetic Stimulation

  • Choi, Sun-Seob;Bo, Gak-Hwang;Kim, Whi-Young
    • Journal of Magnetics
    • /
    • v.16 no.1
    • /
    • pp.51-57
    • /
    • 2011
  • A power supply for magnetic-stimulation devices was designed via a control algorithm that involved a start current application based on a resonant converter. In this study, a new power supply for magnetic-stimulation devices was designed by controlling the pulse repetition frequency and pulse width. The power density could be controlled using the start-current-compensation and ZCS (zero-current switching) resonant converter. The results revealed a high-repetition-frequency, high-power magnetic-stimulation device. It was found that the stimulation coil current pulse width and that pulse repetition frequency could be controlled within the range of 200-450 ${\mu}S$ and 200-900 pps, respectively. The magnetic-stimulation device in this study consisted of a stimulation coil device and a power supply system. The maximum power of the stimulation coil from one discharge was 130 W, which was increased to 260 W using an additional reciprocating discharge. The output voltage was kept stable in a sinusoidal waveform regardless of the load fluctuations by forming voltage and current control using a deadbeat controller without increasing the current rating at the starting time. This paper describes this magnetic-stimulation device to which the start current was applied.

Effects of Repetitive Transcranial Magnetic Stimulation on Motor Recovery in Lower Extremities of Subacute Stage Incomplete Spinal Cord Injury Patients: A Randomized Controlled Trial

  • Ji, Sang-Goo;Cha, Hyun-Gyu;Kim, Myoung-Kwon
    • Journal of Magnetics
    • /
    • v.20 no.4
    • /
    • pp.427-431
    • /
    • 2015
  • The aim of this study was to investigate whether repetitive transcranial magnetic stimulation (rTMS) can improve motor recovery in the lower extremities of the patients with subacute stage spinal cord injury (SCI). This study was conducted with 19 subjects diagnosed with paraplegia because of SCI. The experimental group included 10 subjects who underwent active rTMS, and the control group included 9 subjects who underwent sham rTMS. The SCI patients in the experimental group underwent conventional rehabilitation therapy, and active rTMS was applied daily to the hotspot of the lesional hemisphere. The SCI patients in the control group underwent sham rTMS and conventional rehabilitation therapy. The participants in both the groups received therapy five days per week for six weeks. Latency, amplitude, and velocity were assessed before and after the six-week therapy period. A significant difference in post-treatment gains for the latency and velocity was observed between the experimental and control groups (p < 0.05). However, no significant differences in the amplitude were observed between the two groups (p > 0.05). The results of this study indicate that rTMS may be beneficial in improving motor recovery in the lower extremities of subacute stage SCI patients.

Changes in Poly ADP Ribose Polymerase Immune Response Cells of Cerebral Ischaemia Induced Rat by Transcranial Magnetic Stimulation of Alternating Current Approach

  • Koo, Hyun-Mo;Kim, Whi-Young
    • Journal of Magnetics
    • /
    • v.19 no.4
    • /
    • pp.357-364
    • /
    • 2014
  • This study examined effect of a transcranial magnetic stimulation device with a commercial-frequency approach on the neuronal cell death caused ischemia. For a simple transcranial magnetic stimulation device, the experiment was conducted on an ischemia induced rat by transcranial magnetic stimulation of a commercial-frequency approach, controlling the firing angle using a Triac power device. The transcranial magnetic stimulation device was controlled at a voltage of 220 V 60 Hz and the trigger of the Triac gate was varied from $45^{\circ}$ up to $135^{\circ}$. Cerebral ischemia was caused by ligating the common carotid artery of male SD rats and reperfusion was performed again to blood after 5 minutes. Protein Expression was examined by Western blotting and the immune response cells reacting to the antibodies of Poly ADP ribose polymerase in the cerebral nerve cells. As a result, for the immune response cells of Poly ADP ribose polymerase related to necrosis, the transcranial magnetic stimulation device suppressed necrosis and had a protective effect on nerve cells. The effect was greatest within 12 hours after ischemia. Therefore, it is believed that in the case of brain damage caused by ischemia, the function of brain cells can be restored and the impairment can be improved by the application of transcranial magnetic stimulation.

Modern acupuncture-like stimulation methods: a literature review

  • Jun, Min-Ho;Kim, Young-Min;Kim, Jaeuk U.
    • Integrative Medicine Research
    • /
    • v.4 no.4
    • /
    • pp.195-219
    • /
    • 2015
  • Acupuncture therapy has been proved to be effective for diverse diseases, symptoms, and conditions in numerous clinical trials. The growing popularity of acupuncture therapy has triggered the development of modern acupuncture-like stimulation devices (ASDs), which are equivalent or superior to manual acupuncture with respect to safety, decreased risk of infection, and facilitation of clinical trials. Here, we aim to summarize the research on modern ASDs, with a focus on featured devices undergoing active research and their effectiveness and target symptoms, along with annual publication rates. We searched the popular electronic databases Medline, PubMed, the Cochrane Library, and Web of Science, and analyzed English-language studies on humans. Thereby, a total of 728 studies were identified, of which 195 studies met our inclusion criteria. Electrical stimulators were found to be the earliest and most widely studied devices (133 articles), followed by laser (44 articles), magnetic (16 articles), and ultrasound (2 articles) stimulators. A total of 114 studies used randomized controlled trials, and 109 studies reported therapeutic benefits. The majority of the studies (32%) focused on analgesia and pain-relief effects, followed by effects on brain activity (16%). All types of the reviewed ASDs were associated with increasing annual publication trends; specifically, the annual growth in publications regarding noninvasive stimulation methods was more rapid than that regarding invasive methods. Based on this observation, we anticipate that the noninvasive or minimally invasive ASDs will become more popular in acupuncture therapy.

Effects of Repetitive Transcranial Magnetic Stimulation on Enhancement of Cognitive Function in Focal Ischemic Stroke Rat Model (국소 허혈성 뇌졸중 모델 흰쥐의 인지기능에 반복경두개자기자극이 미치는 효과)

  • Lee, Jung-In;Kim, Gye-Yeop;Nam, Ki-Won;Lee, Dong-Woo;Kim, Ki-Do;Kim, Kyung-Yoon
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.7 no.1
    • /
    • pp.11-20
    • /
    • 2012
  • Purpose : This study is intended to examine the repetitive transcranial magnetic stimulation on cognitive function in the focal ischemic stroke rat model. Methods : This study selected 30 Sprague-Dawley rats of 8 weeks. The groups were divided into two groups and assigned 15 rats to each group. Control group: Non-treatment after injured by focal ischemic stroke; Experimental group: application of repetitive transcranial magnetic stimulation(0.1 Tesla, 25 Hz, 20 min/time, 2 times/day, 5 days/2 week) after injured by focal ischemic stroke. To assess the effect of rTMS, the passive avoidance test, spatial learning and memory ability test were analyzed at the pre, 1 day, $7^{th}$ day, $14^{th}$ day and immunohistochemistric response of BDNF were analyzed in the hippocampal dentate gyrus at $7^{th}$ day, $14^{th}$ day. Results : In passive avoidance test, the outcome of experimental group was different significantly than the control group at the $7^{th}$ day, $14^{th}$ day. In spatial learning and memory ability test, the outcome of experimental group was different significantly than the control group at the $7^{th}$ day, $14^{th}$ day. In immunohistochemistric response of BDNF in the hippocampal dentate gyrus, experimental groups was more increased than control group. Conclusion : These result suggest that improved cognitive function by repetitive transcranial magnetic stimulation after focal ischemic stroke is associated with dynamically altered expression of BDNF in hippocampal dentate gyrus and that is related with synaptic plasticity.

The Effect of Direct Functional Magnetic Stimulation of the Lesion on Functional Motor Recovery in Spinal Cord Injured Rat (척수손상 흰 쥐의 운동기능 회복에 미치는 손상부위 직접자극을 통한 기능적 자기자극치료 효과)

  • Cho, Yun-Woo;Kim, Su-Jeong;Park, Hea-Woon;Seo, Jeong-Min;Hwang, Se-Jin;Jang, Sung-Ho;Lee, Dong-Gyu;Ahn, Sang-Ho
    • The Journal of Korean Physical Therapy
    • /
    • v.23 no.1
    • /
    • pp.53-58
    • /
    • 2011
  • Purpose: The purpose of this study was to determine the effect of direct functional magnetic stimulation (FMS) of affected spinal cord on motor recovery following spinal cord injury in rats. Methods: After a contusion injury at the spinal level T9 using an NYU Impactor, functional magnetic stimulation was delivered by a magnetic stimulator through a round prototype coil (7 cm in diameter). Stimulation parameters were set as follows: repetition rate = 50 Hz (stimulus intensity 100% = 0.18 T), stimulation time = 20 min. Functional magnetic stimulation was administered twice a day, 5 days per week for 8 weeks starting 4 days after spinal cord injury. Functional magnetic stimulationwas delivered directly to the affected spinal cord. Outcomes of locomotor performance were assessed by the Basso Beattie Bresnahan (BBB) locomotor rating scale and by an inclined plane test weekly for 8 weeks. Results: In the BBB test, hindlimb motor function in the Functional magnetic stimulation group improved significantly more compared to the control group at 3, 4, 6, 7, and 8 weeks (p<0.05). In the inclined plane test, the angle of the plane in the functional magnetic stimulation group increased significantly more compared to the control group at 4, 5, 7, and 8 weeks (p<0.05). Conclusion: Our results demonstrate that direct Functional magnetic stimulation of the lesional site may have beneficial effects on motor improvement after spinal cord injury.