• 제목/요약/키워드: Magnetic Probe

검색결과 262건 처리시간 0.029초

3차원 Navigator에 적용할 적외선 시스템의 구성 (An Implementation of an Infrared System for the 3D Navigator)

  • 신동익;허수진
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1998년도 추계학술대회
    • /
    • pp.315-316
    • /
    • 1998
  • The purpose of this study is a potentiality examination of an infrared camera system for the 3D navigator which can be used in the field of neurosurgery. Nowadays, CAS(computer aided surgery) technique using 3D navigator is rapidly spread into the neurosurgeric operation such as brain and spine surgery. Several techniques which can detect 3D position of a probe have been proposed. These include mechnical arm, magnetic field, optical and ultrasonic sensing methods. In this study, we decided that using optical sensing method and tested a conventional CCD camera with a infrared filter and LEDs. Pulnix TM-300 camra has sufficient spectral response in the range of near infrared. Acquired image of infrared LEDs also sufficient quality.

  • PDF

PZT 박막의 나노 마멸특성에 관한 연구

  • 이용하;정구현;김대은;유진규;홍승범
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 춘계학술대회 논문요약집
    • /
    • pp.135-135
    • /
    • 2004
  • 21세기 정보화시대에 미디어의 발전은 고저장밀도를 요구하는 정보저장 장치의 개발을 필요로 하게 되었고, 현재 정보저장 장치의 주류를 이루는 magnetic recording 방식에 의한 HDD는 향후 5년 이내에 초자성한계 (super paramagnetic limit)라는 물리적 현상에 직면하여 더 이상 발전이 어려울 깃이다 따라서 이러한 한계를 극복하기 위한 여러 기술 증 Scanning Probe Microscope (SPM)을 이용한 차세대 탐침형 정보저장 기술은 미세한 끝단 반경을 가지는 탐침과 표면의 상호작용을 이용하여 정보를 기록/재생하는 기술로써 수십 nm 크기의 bit를 형성하여 Tbit/in$^2$ 이상의 높은 저장밀도를 가질 수 있으므로 현재 가장 상용화될 가능성이 높다.(중략)

  • PDF

자장의 배열 및 형태가 유도결합형 플라즈마에 미치는 효과에 관한 연구 (A study on the effects of variously configured magnets on the characteristics of inductively coupled plasma)

  • 황순원;이영준;유지범;이재찬;염근영
    • 한국표면공학회지
    • /
    • 제32권4호
    • /
    • pp.513-520
    • /
    • 1999
  • In this study, we investigated the effects of variously configured magnets on the characteristics of the plasmas to enhance plasma uniformity and density of an inductively coupled plasma source. As the magnets, Helmholtz type axial electromagnets and various multi-dipole magnets types around the chamber wall were used. To characterize the plasma as a function of the combination of the magnets and magnetic field strengths, ion density, electron temperature, and plasma potential were measured using an electrostatic probe along the chamber diameter for Ar plasmas. The measured maximum ion densities were $8$\times$10^{ 11}$$cm^{-3}$ with 600W inductive power and at 5mTorr of operational pressure and the uniformity of ion density was less than 5.9% at 2mTorr of operational pressure. The combination of an optimized multi-dipole magnet type and an axial electromagnet showed the lowest electron temperature (3eV) and plasma potential ($34V{p}$ )

  • PDF

라인형 플라즈마 소스를 이용한 ALD 공정 연구 (Study of ALD Process using the Line Type Plasma Source)

  • 권기청;조태훈;최진우;송세영;설제윤;이준신
    • 반도체디스플레이기술학회지
    • /
    • 제15권4호
    • /
    • pp.33-35
    • /
    • 2016
  • In this study, a new plasma source was used in the ALD process. Line type plasma sources were analyzed by electric and magnetic field simulation. And the results were compared with plasma density and electron temperature measurement results. As a result, the results of the computer simulation and the diagnosis results of plasma density and electron temperature showed similar tendency. At this time, the plasma uniformity is 95.6 %. $Al_2O_3$ thin film was coated on 6 inch Si-wafer, using this plasma source. The uniformity of the thin film was more than 98% and the thin film growth rate was 0.13 nm/cycle.

레퍼런스 패턴 기반 면내 위치 측정 방법 (Measuring Method of In-plane Position Based On Reference Pattern)

  • 정광석
    • 융복합기술연구소 논문집
    • /
    • 제2권1호
    • /
    • pp.43-48
    • /
    • 2012
  • Generally, in-plane position of moving object is measured referring to the reference pattern attached to the object. From optical camera to magnetic reluctance probe, there are many ways detecting a variation of the periodical pattern. In this paper, the various operating principles developed for in-plane positioning are reviewed and compared each other. And, a novel method measuring large rotation as well as x, y linear displacements is suggested, including a detailed description of the overall system layout. It is a modified version of the surface encoder, which is a robust digital measuring method. From the surface encoder, the rotation of an object is measured indirectly through a compensated input of optical servo and independently of linear displacements. So, the operating range can be extended simply by enlarging the reference pattern, without magnifying the decoding units.

  • PDF

Review of Photoacoustic Imaging for Imaging-Guided Spinal Surgery

  • Han, Seung Hee
    • Neurospine
    • /
    • 제15권4호
    • /
    • pp.306-322
    • /
    • 2018
  • This review introduces the current technique of photoacoustic imaging as it is applied in imaging-guided surgery (IGS), which provides the surgeon with image visualization and analysis capabilities during surgery. Numerous imaging techniques have been developed to help surgeons perform complex operations more safely and quickly. Although surgeons typically use these kinds of images to visualize targets hidden by bone and other tissues, it is nonetheless more difficult to perform surgery with static reference images (e.g., computed tomography scans and magnetic resonance images) of internal structures. Photoacoustic imaging could enable real-time visualization of regions of interest during surgery. Several researchers have shown that photoacoustic imaging has potential for the noninvasive diagnosis of various types of tissues, including bone. Previous studies of the surgical application of photoacoustic imaging have focused on cancer surgery, but photoacoustic imaging has also recently attracted interest for spinal surgery, because it could be useful for avoiding pedicle breaches and for choosing an appropriate starting point before drilling or pedicle probe insertion. This review describes the current instruments and clinical applications of photoacoustic imaging. Its primary objective is to provide a comprehensive overview of photoacoustic IGS in spinal surgery.

KVN unveils the plasma physics of AGN

  • Trippe, Sascha
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.51.3-51.3
    • /
    • 2019
  • Its ability to measure the polarization of light at four frequencies makes the KVN a "plasma physics observatory" that can probe the internal physics (e.g., magnetic fields, outflow geometries) of AGN radio jets and cores. We initiated a Key Science Program, the Plasma-physics of Active Galactic Nuclei (PAGaN) project, dedicated to polarimetric monitoring of 14 radio-bright AGN. We have been able to measure the Faraday rotation measure of the cores of our targets as function of frequency; the observed scaling relation is in good agreement with conically expanding outflows to first order. We are further probing a polarized hotspot in the jet of 3C84 and possible systematic differences in the Faraday rotation in BL Lacertae objects and flat spectrum radio quasars.

  • PDF

과학위성 1호의 우주 플라즈마 관측 시스템 (SPACE PHYSICS PACKAGE ON KAISTSAT-4)

  • 황정아;이재진;이대희;이진근;김희준;박재홍;민경욱;신영훈
    • 천문학논총
    • /
    • 제15권spc2호
    • /
    • pp.45-52
    • /
    • 2000
  • Four plasma instruments are currently under development for KAISTSAT-4 (K-4) which is scheduled for launch in 2002. They are the Solid-State Telescope, Electro-Static Analyzer, Langmuir Probe, and the Scientific Magnetometer, that will respectively allow in-situ detection of high energy and low energy components of auroral particles, ionospheric thermal electrons, and magnetic field disturbances. These instruments, together with the Far-ultraviolet IMaging Spectrograph, will provide micro-scale physics of Earth's polar ionosphere with detailed spectral information that has not been previously achieved with other space missions. In this paper, we review the concept of the four space plasma instruments as well as the anticipated results from the instruments.

  • PDF

무선주파수 간섭 측정을 위한 Printed Spiral Coil (PSC) 프로브의 고주파 모델링 (High-Frequency Modeling of Printed Spiral Coil Probes for Radio-Frequency Interference Measurement)

  • 김경민;송익환
    • 한국전자파학회논문지
    • /
    • 제29권1호
    • /
    • pp.10-19
    • /
    • 2018
  • 본 논문에서는 고주파 Radio-Frequency Interference (RFI) 측정용 프로브로 널리 쓰이는 Printed Spiral Coil(PSC)의 고주파 등가회로 모델이 제안되었다. 제안된 모델은 고주파 정합성을 확보하기 위하여 PSC의 설계변수에 기반한 분포 모델로 설계되었으며, 제안된 분포 등가회로 모델을 바탕으로 T-Pi 등가변환을 이용한 PSC의 고주파 해석적 모델 역시 새로이 제안되었다. 제안된 모델의 실제 고주파 RFI 측정 시 효용성을 확인하기 위하여, 임의의 RFI 노이즈 원으로 설계된 마이크로스트립 라인과 PSC 사이의 전달함수를 제안된 모델과 상호 인덕턴스를 결합하여 추출하였다. 제안된 PSC 모델의 자기 임피던스(self-impedance)와 전달함수는 3-dimensional field solver를 이용한 시뮬레이션 및 실 측정으로 검증되었으며, 6 GHz까지 높은 정합성을 보이는 것이 확인되었다. 제안된 PSC의 자기 임피던스 및 전달함수 모델은 GHz 영역의 고주파 통신대역에서의 RFI 측정용 프로브 설계 및 노이즈 간섭 예측에 활용될 수 있다.