• Title/Summary/Keyword: Magnetic Probe

Search Result 262, Processing Time 0.023 seconds

Spin-Polarized Angle-Resolved Photoemission Spectroscopy Study of Magnetism (스핀편극 각도분해 광전자 분광학을 이용한 자성연구)

  • Kim, Hyeong-Do
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.6
    • /
    • pp.228-233
    • /
    • 2012
  • Magnetic properties of a solid are determined by the quantum mechanical states of valence electrons. Spin-polarized angle-resolved photoemission spectroscopy (SP-ARPES) is a powerful tool to probe the electronic states in a solid and provides valuable information on magnetic properties of a solid. In this article, brief introduction to SP-ARPES and its applications are provided.

Seeking magnetic separatrices on the solar surface using EUV waves

  • Jang, Soojeong;Kwon, Ryun-Young;Kim, Rok-Soon;Lee, Jae-Ok
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.50.3-50.3
    • /
    • 2019
  • The EUV wave is a disturbance that has been believed to be the fast-mode (shock) wave, which can propagate passing through magnetic field lines. After the passage of EUV waves, coronal streamers start to show kink-mode oscillations, and the footpoints, i.e., magnetic separatrices, of the oscillating streamers are observed as the so-called stationary front. We compare the stationary front observed by EUV imagers and coronal streamers observed in coronagraphic images. We analyze the successive events occurred in September 2011. We find that the stationary fronts are consistent with the coronal streamer boundaries, and they are located along the boundaries of coronal holes and active regions. Our results confirm that EUV waves are in fact fast-mode waves and demonstrate that the stationary front is a promising tool to probe into the source of slow solar wind that is the boundary of coronal streamers on the solar surface.

  • PDF

Design and Array Signal Suggestion of Array Type Pulsed Eddy Current Probe for Health Monitoring of Metal Tubes (금속배관 건전성 감시를 위한 배열형 펄스와전류 탐촉자의 설계 및 배열신호 제안)

  • Shin, Young Kil
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.5
    • /
    • pp.291-298
    • /
    • 2015
  • An array type probe for monitoring metal tubes is proposed in this paper which utilizes peak value and peak time of a pulsed eddy current(PEC) signal. The probe consists of an array of encircling coils along a tube and the outside of coils is shielded by ferrite to prevent source magnetic fields from directly affecting sensor signals since it is the magnetic fields produced by eddy currents that reflect the condition of metal tubes. The positions of both exciter and sensor coils are consecutively moved automatically so that manual scanning is not necessary. At one position of send-receive coils, peak value and peak time are extracted from a sensor PEC signal and these data are accumulated for all positions to form an array type peak value signal and an array type peak time signal. Numerical simulation was performed using the backward difference method in time and the finite element method for spatial analysis. Simulation results showed that peak value increases and the peak appears earlier as the defect depth or length increases. The proposed array signals are shown to be excellent in reflecting the defect location as well as variations of defect depth and length within the array probe.

Magnetized inductively coupled plasma etching of GaN in $Cl_2/BCl_3$ plasmas

  • Lee, Y.H.;Sung, Y.J.;Yeom, G.Y.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 1999.10a
    • /
    • pp.49-49
    • /
    • 1999
  • In this study, $Cl_2/BCI_3$ magnetized inductively coupled plasmas (MICP) were used to etch GaN and the effects of magnetic confinements of inductively coupled plasmas on the GaN etch characteristics were investigated as a function of $Cl_2/BCI_3$. Also, the effects of Kr addition to the magnetized $Cl_2/BCI_3$ plasmas on the GaN etch rates were investigated. The characteristics of the plasmas were estimated using a Langmuir probe and quadrupole ma~s spectrometry (QMS). Etched GaN profiles were observed using scanning electron microscopy (SEM). The small addition of $Cl_2/BCI_3$ (10-20%) in $Cl_2$ increased GaN etch rates for both with and without the magnetic confinements. The application of magnetic confinements to the $Cl_2/BCI_3$ inductively coupled plasmas (ICP) increased GaN etch rates and changed the $Cl_2/BCI_3$ gas composition of the peak GaN etch rate from 10% $BCI_3$ to 20% $BCI_3$. It also increased the etch selectivity over photoresist, while slightly reducing the selectivity over $Si0_2$. The application of the magnetic field significantly increased positive $BCI_2{\;}^+$ measured by QMS and total ion saturation current measured by the Langmuir probe. Other species such as CI, BCI, and CI+ were increased while species such as $BCl_2$ and $BCI_3$ were decreased with the application of the magnetic field. Therefore, it appears that the increase of GaN etch rate in our experiment is related to the increased dissociative ionization of $BCI_3$ by the application of the magnetic field. The addition of 10% Kr in an optimized $Cl_2/BCI_3$ condition (80% $Cl_2/$ 20% $BCI_3$) with the magnets increased the GaN etch rate about 60%. More anisotropic GaN etch profile was obtained with the application of the magnetic field and a vertical GaN etch profile could be obtained with the addition of 10% Kr in an optimized $Cl_2/BCI_3$ condition with the magnets.

  • PDF

Synthesis of conducting and magnetic nanocomposite of cross-linked aniline sulfide resin

  • Hosseini, Seyed Hossein
    • Advances in materials Research
    • /
    • v.3 no.4
    • /
    • pp.233-242
    • /
    • 2014
  • Magnetic and conducting aniline sulfide resin cross-linked (ASC-Fe3O4) nanocomposite has been prepared in the presence of aniline sulfide resin (ASR), aniline, $Fe_3O_4$ coated by polyethylene glycol (PEG) and initiator. The magnetic properties of the resulting composites showed ferromagnetic behavior, such as high-saturated magnetization (Ms= 41 emu/g), and coercive force (Hc=1.5 Oe). The saturated magnetization was increased by increasing of $Fe_3O_4$ content and decreased by increasing aniline ratio. The transmission electron micrograph (TEM) and X-ray diffraction proved that nanometer-sized about 20-30 nm $Fe_3O_4$ in the composite. The average size of ASC-$Fe_3O_4$ nanocomposite with core-shell structure was about 50-60 nm, and polydisperse. This approach may also be extended to the synthesis and modification of other polymers. Electrical conductivity of aniline sulfide resin cross-linked (ASC) nanocomposite has been studied by four-point probe method and produced $3.3{\times}10^{-4}S/cm$ conductivity for it. The conductivity of the composites at room temperature depended on the $Fe_3O_4$, aniline ratio and doping degree. The thermogravimetry analysis (TGA) results showed that this resin is thermal resistance near of $500^{\circ}C$. So, It can be used for resistance thermal coating for military applications. $Fe_3O_4$-PASC nanocomposite has been flexible structure with electrical and magnetic properties.

The Electro-Magnetic Susceptibility Test Method of a Road Vehicle Considering the Field Uniformity (전계의 균일성을 고려한 자동차의 전자파 내성시험 방법에 관한 연구)

  • Bae, Min-Gwan;Shin, Jae-Kon;Yong, Gee-Joong;Woo, Hyun-Gu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.84-91
    • /
    • 2010
  • Owing to revolutionary developments in automobile technologies, a variety of advanced vehicles - hybrid vehicle, hydrogen fuel-cell vehicle, electric vehicle, etc. - emerges recently. The safety is getting more important for developing automobiles. The electro-magnetic compatibility has to be assured, since those advanced vehicles are equipped with various new electronic systems. Electro-magnetic compatibility tests, in general, consist of an EMI(electro-magnetic interference) test and an EMS (electro-magnetic susceptibility) test. We investigated the susceptibility test method suggested in KMVSS (Korean Motor Vehicle Safety Standard) as the EMS test method. A series of experiments results that the above test method should be partially revised to comply with a Korean governmental standard method. In this paper, the some directions of modifications are presented to enhance the quality of the above EMS test method.

MRI-Induced Full Thickness Burn on the Ear Lobule due to Pulse Oximetry: A Case Report (증례보고: MRI 검사시 귓불에 부착한 산소측정기로 인해 발생한 전층 화상)

  • Kim, BumSik;Lim, SooA;Yoon, JungSoo;Eo, SuRak;Han, Yea Sik
    • Journal of the Korean Burn Society
    • /
    • v.24 no.2
    • /
    • pp.43-45
    • /
    • 2021
  • Magnetic Resonance Image (MRI) has been used as a safe, conventional and harmless diagnostic tool. However, thermal injuries have frequently been reported during MRI scanning due to the heat generated by the reaction with the magnetic field. It is recommended that metal-containing monitoring devices such as pulse oximetry and ECG monitoring leads should be removed prior to the start of the MRI scan, but these monitoring devices are inevitably placed in children or patients in the intensive care unit who have low compliance with the scan. Since the interaction between the metal probe or wire loop of pulse oximetry and the magnetic field can result in high thermal conduction, full-thickness burn can occur over the entire body surface during the MRI examination. Several cases of thermal burns from pulse oximetry on the fingers have been reported. However, we present a case of a full-thickness burn arising left earlobe in a 2-month-old child caused by the high conduction heat from pulse oximetry metal probe.

Development of Conductivity Standards for Metals using the van der Pauw Method (van der Pauw method를 이용한 금속도전율 표준시편 개발)

  • Kang, Jeon-Hong;Yu, Kwang-Min;Lee, Sang-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.11
    • /
    • pp.1617-1620
    • /
    • 2013
  • The widely-used measurement methods for conductivity of non-magnetic metals are van der Pauw method, Two Point Probe method and Eddy Current method. Among them a more simpler and easier method is the Eddy Current method and an instrument using the method is a Conductivity Meter which can measure a conductivity by contacting its probe on a sample surface. However, conductivity standards are essentially needed to confirm the meter's performance or to calibrate it. In this study, six kinds of the standards which are made of Cu, Al-1, Al-2, brass, Zn and SUS-316 are developed and conductivity ranges for the standards are 2.27 %IACS ~ 101.6 %IACS with measurement uncertainty of less than 0.3 %.

Development of 600-MHz 19F-7Li Solid-State NMR Probe for In-Situ Analysis of Lithium Ion Batteries

  • Jeong, Ji-Ho;Park, Yu-Geun;Choi, Sung-Sub;Kim, Yongae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3253-3256
    • /
    • 2013
  • Lithium is a highly attractive material for high-energy-concentration batteries, since it has low weight and high potential. Rechargeable lithium-ion batteries (LIBs), which have the extremely high gravimetric and volumetric energy densities, are currently the most preferable power sources for future electric vehicles and various portable electronic devices. In order to improve the efficiency and lifetime, new electrode compounds for lithium intercalation or insertion have been investigated for rechargeable batteries. Solid-state nuclear magnetic resonance (NMR) is a very useful tool to investigate the structural changes in electrode materials in actual working lithium-ion batteries. To detect the in-situ microstructural changes of electrode and electrolyte materials, $^7Li-^{19}F$ double-resonance solid-state NMR probe with a static solenoidal coil for a 600-MHz narrow-bore magnet was designed, constructed, and tested successfully.

Development of an Electromagnetic Actuator for Probe-based Data using Si Storage by Process and Cu Electroplating (실리콘 공정 및 동 도금 기술을 이용한 탐침형 정보저장장치의 전자기력 미디어 구동기 제작)

  • 조진우;이경일;김성현;최영진
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.4
    • /
    • pp.225-230
    • /
    • 2004
  • An electromagnetic actuator has been designed and fabricated for Probe-based data storage applications. The actuator consists of permanent magnets(SmCo) housing and a media Platform which is connected to the Si frame by four couples of Si leaf springs. In order to generate electromagnetic force, Cu coils were electroplated under the media platform. The magnetic field distribution was calculated with 3D Finite Element Method of Maxwell 3D program. The field strength felt by Cu coils was estimated to be about 0.33T when the distance between the media platform and permanent magnets is $200\mu\textrm{m}$. The static and dynamic motions of the actuator were analyzed by FEM method with ANSYS 5.3. The measured displacements of the actuator were about $\pm$$92\mu\textrm{m}$ for input current of $\pm$40㎃ and the resonance frequency was 100Hz. The proposed electromagnetic actuator can be utilized for media driver of probe-based data storage system.