• Title/Summary/Keyword: Magnetic Materials

Search Result 3,874, Processing Time 0.033 seconds

T2 Mapping with and without Fat-Suppression to Predict Treatment Response to Intravenous Glucocorticoid Therapy for Thyroid-Associated Ophthalmopathy

  • Linhan Zhai;Qiuxia Wang;Ping Liu;Ban Luo;Gang Yuan;Jing Zhang
    • Korean Journal of Radiology
    • /
    • v.23 no.6
    • /
    • pp.664-673
    • /
    • 2022
  • Objective: To evaluate the performance of baseline clinical characteristics and pretherapeutic histogram parameters derived from T2 mapping of the extraocular muscles (EOMs) in the prediction of treatment response to intravenous glucocorticoid (IVGC) therapy for active and moderate-to-severe thyroid-associated ophthalmopathy (TAO) and to investigate the effect of fat-suppression (FS) in T2 mapping in this prediction. Materials and Methods: A total of 79 patients clinically diagnosed with active, moderate-to-severe TAO (47 female, 32 male; mean age ± standard deviation, 46.1 ± 10 years), including 43 patients with a total of 86 orbits in the responsive group and 36 patients with a total of 72 orbits in the unresponsive group, were enrolled. Baseline clinical characteristics and pretherapeutic histogram parameters derived from T2 mapping with FS (i.e., FS T2 mapping) or without FS (i.e., conventional T2 mapping) of EOMs were compared between the two groups. Independent predictors of treatment response to IVGC were identified using multivariable analysis. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the predictive performance of the prediction models. Differences between the models were examined using the DeLong test. Results: Compared to the unresponsive group, the responsive group had a shorter disease duration, lower kurtosis (FS-kurtosis), lower standard deviation, larger 75th, 90th, and 95th (FS-95th) T2 relaxation times in FS mapping and lower kurtosis in conventional T2 mapping. Multivariable analysis revealed that disease duration, FS-95th percentile, and FS-kurtosis were independent predictors of treatment response. The combined model, integrating all identified predictors, had an optimized area under the ROC curve of 0.797, 88.4% sensitivity, and 62.5% specificity, which were significantly superior to those of the imaging model (p = 0.013). Conclusion: An integrated combination of disease duration, FS-95th percentile, and FS-kurtosis was a potential predictor of treatment response to IVGC in patients with active and moderate-to-severe TAO. FS T2 mapping was superior to conventional T2 mapping in terms of prediction.

Usefulness of Silent MRA for Evaluation of Aneurysm after Stent-Assisted Coil Embolization

  • You Na Kim;Jin Wook Choi;Yong Cheol Lim;Jihye Song;Ji Hyun Park;Woo Sang Jung
    • Korean Journal of Radiology
    • /
    • v.23 no.2
    • /
    • pp.246-255
    • /
    • 2022
  • Objective: To determine the usefulness of Silent MR angiography (MRA) for evaluating intracranial aneurysms treated with stent-assisted coil embolization. Materials and Methods: Ninety-nine patients (101 aneurysms) treated with stent-assisted coil embolization (Neuroform atlas, 71 cases; Enterprise, 17; LVIS Jr, 9; and Solitaire AB, 4 cases) underwent time-of-flight (TOF) MRA and Silent MRA in the same session using a 3T MRI system within 24 hours of embolization. Two radiologists independently interpreted both MRA images retrospectively and rated the image quality using a 5-point Likert scale. The image quality and diagnostic accuracy of the two modalities in the detection of aneurysm occlusion were further compared based on the stent design and the site of aneurysm. Results: The average image quality scores of the Silent MRA and TOF MRA were 4.38 ± 0.83 and 2.78 ± 1.04, respectively (p < 0.001), with an almost perfect interobserver agreement. Silent MRA had a significantly higher image quality score than TOF MRA at the distal internal carotid artery (n = 57, 4.25 ± 0.91 vs. 3.05 ± 1.16, p < 0.001), middle cerebral artery (n = 21, 4.57 ± 0.75 vs. 2.19 ± 0.68, p < 0.001), anterior cerebral artery (n = 13, 4.54 ± 0.66 vs. 2.46 ± 0.66, p < 0.001), and posterior circulation artery (n = 10, 4.50 ± 0.71 vs. 2.90 ± 0.74, p = 0.013). Silent MRA had superior image quality score to TOF MRA in the stented arteries when using Neuroform atlas (4.66 ± 0.53 vs. 3.21 ± 0.84, p < 0.001), Enterprise (3.29 ± 1.59 vs. 1.59 ± 0.51, p = 0.003), LVIS Jr (4.33 ± 1.89 vs. 1.89 ± 0.78, p = 0.033), and Solitaire AB stents (4.00 ± 2.25 vs. 2.25 ± 0.96, p = 0.356). The interpretation of the status of aneurysm occlusion exhibited significantly higher sensitivity with Silent MRA than with TOF MRA when using the Neuroform Atlas stent (96.4% vs. 14.3%, respectively, p < 0.001) and LVIS Jr stent (100% vs. 20%, respectively, p = 0.046). Conclusion: Silent MRA can be useful to evaluate aneurysms treated with stent-assisted coil embolization, regardless of the aneurysm location and type of stent used.

Total Bilirubin Level as a Predictor of Suboptimal Image Quality of the Hepatobiliary Phase of Gadoxetic Acid-Enhanced MRI in Patients with Extrahepatic Bile Duct Cancer

  • Jeong Ah Hwang;Ji Hye Min;Seong Hyun Kim;Seo-Youn Choi;Ji Eun Lee;Ji Yoon Moon
    • Korean Journal of Radiology
    • /
    • v.23 no.4
    • /
    • pp.389-401
    • /
    • 2022
  • Objective: This study aimed to determine a factor for predicting suboptimal image quality of the hepatobiliary phase (HBP) of gadoxetic acid-enhanced MRI in patients with extrahepatic bile duct (EHD) cancer before MRI examination. Materials and Methods: We retrospectively evaluated 259 patients (mean age ± standard deviation: 68.0 ± 8.3 years; 162 male and 97 female) with EHD cancer who underwent gadoxetic acid-enhanced MRI between 2011 and 2017. Patients were divided into a primary analysis set (n = 184) and a validation set (n = 75) based on the diagnosis date of January 2014. Two reviewers assigned the functional liver imaging score (FLIS) to reflect the HBP image quality. The FLIS consists of the sum of three HBP features, each scored on a 0-2 scale: liver parenchymal enhancement, biliary excretion, and signal intensity of the portal vein. Patients were classified into low-FLIS (0-3) or high-FLIS (4-6) groups. Multivariable analysis was performed to determine a predictor of low FLIS using serum biochemical and imaging parameters of cholestasis severity. The optimal cutoff value for predicting low FLIS was obtained using receiver operating characteristic analysis, and validation was performed. Results: Of the 259 patients, 140 (54.0%) and 119 (46.0%) were classified into the low-FLIS and high-FLIS groups, respectively. In the primary analysis set, total bilirubin was an independent factor associated with low FLIS (adjusted odds ratio per 1-mg/dL increase, 1.62; 95% confidence interval [CI], 1.32-1.98). The optimal cutoff value of total bilirubin for predicting low FLIS was 2.1 mg/dL with a sensitivity of 95.1% (95% CI: 88.9-98.4) and a specificity of 89.0% (95% CI: 80.2-94.9). In the validation set, the total bilirubin cutoff showed a sensitivity of 92.1% (95% CI: 78.6-98.3) and a specificity of 83.8% (95% CI: 68.0-93.8). Conclusion: Serum total bilirubin before acquisition of gadoxetic acid-enhanced MRI may help predict suboptimal HBP image quality in patients with EHD cancer.

Development and Validation of a Model Using Radiomics Features from an Apparent Diffusion Coefficient Map to Diagnose Local Tumor Recurrence in Patients Treated for Head and Neck Squamous Cell Carcinoma

  • Minjae Kim;Jeong Hyun Lee;Leehi Joo;Boryeong Jeong;Seonok Kim;Sungwon Ham;Jihye Yun;NamKug Kim;Sae Rom Chung;Young Jun Choi;Jung Hwan Baek;Ji Ye Lee;Ji-hoon Kim
    • Korean Journal of Radiology
    • /
    • v.23 no.11
    • /
    • pp.1078-1088
    • /
    • 2022
  • Objective: To develop and validate a model using radiomics features from apparent diffusion coefficient (ADC) map to diagnose local tumor recurrence in head and neck squamous cell carcinoma (HNSCC). Materials and Methods: This retrospective study included 285 patients (mean age ± standard deviation, 62 ± 12 years; 220 male, 77.2%), including 215 for training (n = 161) and internal validation (n = 54) and 70 others for external validation, with newly developed contrast-enhancing lesions at the primary cancer site on the surveillance MRI following definitive treatment of HNSCC between January 2014 and October 2019. Of the 215 and 70 patients, 127 and 34, respectively, had local tumor recurrence. Radiomics models using radiomics scores were created separately for T2-weighted imaging (T2WI), contrast-enhanced T1-weighted imaging (CE-T1WI), and ADC maps using non-zero coefficients from the least absolute shrinkage and selection operator in the training set. Receiver operating characteristic (ROC) analysis was used to evaluate the diagnostic performance of each radiomics score and known clinical parameter (age, sex, and clinical stage) in the internal and external validation sets. Results: Five radiomics features from T2WI, six from CE-T1WI, and nine from ADC maps were selected and used to develop the respective radiomics models. The area under ROC curve (AUROC) of ADC radiomics score was 0.76 (95% confidence interval [CI], 0.62-0.89) and 0.77 (95% CI, 0.65-0.88) in the internal and external validation sets, respectively. These were significantly higher than the AUROC values of T2WI (0.53 [95% CI, 0.40-0.67], p = 0.006), CE-T1WI (0.53 [95% CI, 0.40-0.67], p = 0.012), and clinical parameters (0.53 [95% CI, 0.39-0.67], p = 0.021) in the external validation set. Conclusion: The radiomics model using ADC maps exhibited higher diagnostic performance than those of the radiomics models using T2WI or CE-T1WI and clinical parameters in the diagnosis of local tumor recurrence in HNSCC following definitive treatment.

Prediction of Decompensation and Death in Advanced Chronic Liver Disease Using Deep Learning Analysis of Gadoxetic Acid-Enhanced MRI

  • Subin Heo;Seung Soo Lee;So Yeon Kim;Young-Suk Lim;Hyo Jung Park;Jee Seok Yoon;Heung-Il Suk;Yu Sub Sung;Bumwoo Park;Ji Sung Lee
    • Korean Journal of Radiology
    • /
    • v.23 no.12
    • /
    • pp.1269-1280
    • /
    • 2022
  • Objective: This study aimed to evaluate the usefulness of quantitative indices obtained from deep learning analysis of gadoxetic acid-enhanced hepatobiliary phase (HBP) MRI and their longitudinal changes in predicting decompensation and death in patients with advanced chronic liver disease (ACLD). Materials and Methods: We included patients who underwent baseline and 1-year follow-up MRI from a prospective cohort that underwent gadoxetic acid-enhanced MRI for hepatocellular carcinoma surveillance between November 2011 and August 2012 at a tertiary medical center. Baseline liver condition was categorized as non-ACLD, compensated ACLD, and decompensated ACLD. The liver-to-spleen signal intensity ratio (LS-SIR) and liver-to-spleen volume ratio (LS-VR) were automatically measured on the HBP images using a deep learning algorithm, and their percentage changes at the 1-year follow-up (ΔLS-SIR and ΔLS-VR) were calculated. The associations of the MRI indices with hepatic decompensation and a composite endpoint of liver-related death or transplantation were evaluated using a competing risk analysis with multivariable Fine and Gray regression models, including baseline parameters alone and both baseline and follow-up parameters. Results: Our study included 280 patients (153 male; mean age ± standard deviation, 57 ± 7.95 years) with non-ACLD, compensated ACLD, and decompensated ACLD in 32, 186, and 62 patients, respectively. Patients were followed for 11-117 months (median, 104 months). In patients with compensated ACLD, baseline LS-SIR (sub-distribution hazard ratio [sHR], 0.81; p = 0.034) and LS-VR (sHR, 0.71; p = 0.01) were independently associated with hepatic decompensation. The ΔLS-VR (sHR, 0.54; p = 0.002) was predictive of hepatic decompensation after adjusting for baseline variables. ΔLS-VR was an independent predictor of liver-related death or transplantation in patients with compensated ACLD (sHR, 0.46; p = 0.026) and decompensated ACLD (sHR, 0.61; p = 0.023). Conclusion: MRI indices automatically derived from the deep learning analysis of gadoxetic acid-enhanced HBP MRI can be used as prognostic markers in patients with ACLD.

Development and Validation of MRI-Based Radiomics Models for Diagnosing Juvenile Myoclonic Epilepsy

  • Kyung Min Kim;Heewon Hwang;Beomseok Sohn;Kisung Park;Kyunghwa Han;Sung Soo Ahn;Wonwoo Lee;Min Kyung Chu;Kyoung Heo;Seung-Koo Lee
    • Korean Journal of Radiology
    • /
    • v.23 no.12
    • /
    • pp.1281-1289
    • /
    • 2022
  • Objective: Radiomic modeling using multiple regions of interest in MRI of the brain to diagnose juvenile myoclonic epilepsy (JME) has not yet been investigated. This study aimed to develop and validate radiomics prediction models to distinguish patients with JME from healthy controls (HCs), and to evaluate the feasibility of a radiomics approach using MRI for diagnosing JME. Materials and Methods: A total of 97 JME patients (25.6 ± 8.5 years; female, 45.5%) and 32 HCs (28.9 ± 11.4 years; female, 50.0%) were randomly split (7:3 ratio) into a training (n = 90) and a test set (n = 39) group. Radiomic features were extracted from 22 regions of interest in the brain using the T1-weighted MRI based on clinical evidence. Predictive models were trained using seven modeling methods, including a light gradient boosting machine, support vector classifier, random forest, logistic regression, extreme gradient boosting, gradient boosting machine, and decision tree, with radiomics features in the training set. The performance of the models was validated and compared to the test set. The model with the highest area under the receiver operating curve (AUROC) was chosen, and important features in the model were identified. Results: The seven tested radiomics models, including light gradient boosting machine, support vector classifier, random forest, logistic regression, extreme gradient boosting, gradient boosting machine, and decision tree, showed AUROC values of 0.817, 0.807, 0.783, 0.779, 0.767, 0.762, and 0.672, respectively. The light gradient boosting machine with the highest AUROC, albeit without statistically significant differences from the other models in pairwise comparisons, had accuracy, precision, recall, and F1 scores of 0.795, 0.818, 0.931, and 0.871, respectively. Radiomic features, including the putamen and ventral diencephalon, were ranked as the most important for suggesting JME. Conclusion: Radiomic models using MRI were able to differentiate JME from HCs.

High-Resolution Intracranial Vessel Wall MRI Findings Among Different Middle Cerebral Artery Territory Infarction Types

  • So Yeon Won;Jihoon Cha;Hyun Seok Choi;Young Dae Kim;Hyo Suk Nam;Ji Hoe Heo;Seung-Koo Lee
    • Korean Journal of Radiology
    • /
    • v.23 no.3
    • /
    • pp.333-342
    • /
    • 2022
  • Objective: Intracranial atherosclerotic stroke occurs through various mechanisms, mainly by artery-to-artery embolism (AA) or branch occlusive disease (BOD). This study evaluated the spatial relationship between middle cerebral artery (MCA) plaques and perforating arteries among different MCA territory infarction types using vessel wall magnetic resonance imaging (VW-MRI). Materials and Methods: We retrospectively enrolled patients with acute MCA infarction who underwent VW-MRI. Thirty-four patients were divided into three groups according to infarction pattern: 1) BOD, 2) both BOD and AA (BOD-AA), and 3) AA. To determine the factors related to BOD, the BOD and BOD-AA groups were combined into one group (with striatocapsular infarction [BOD+]) and compared with the AA group. To determine the factors related to AA, the BOD-AA and AA groups were combined into another group (with cortical infarction [AA+]) and compared with the BOD group. Plaque morphology and the spatial relationship between the perforating artery orifice and plaque were evaluated both quantitatively and qualitatively. Results: The plaque margin in the BOD+ group was closer to the perforating artery orifice than that in the AA group (p = 0.011), with less enhancing plaque (p = 0.030). In the BOD group, plaques were mainly located on the dorsal (41.2%) and superior (41.2%) sides where the perforating arteries mainly arose. No patient in the AA group had overlapping plaques with perforating arteries at the cross-section where the perforator arose. Perforating arteries associated with culprit plaques were most frequently located in the middle two-thirds of the M1 segment (41.4%). The AA+ group had more stenosis (%) than the BOD group (39.73 ± 24.52 vs. 14.42 ± 20.96; p = 0.003). Conclusion: The spatial relationship between the perforating artery orifice and plaque varied among different types of MCA territory infarctions. In patients with BOD, the plaque margin was closer and blocked the perforating artery orifice, and stenosis degree and enhancement were less than those in patients with AA.

MRI Evaluation of Suspected Pathologic Fracture at the Extremities from Metastasis: Diagnostic Value of Added Diffusion-Weighted Imaging

  • Sun-Young Park;Min Hee Lee;Ji Young Jeon;Hye Won Chung;Sang Hoon Lee;Myung Jin Shin
    • Korean Journal of Radiology
    • /
    • v.20 no.5
    • /
    • pp.812-822
    • /
    • 2019
  • Objective: To assess the diagnostic value of combining diffusion-weighted imaging (DWI) with conventional magnetic resonance imaging (MRI) for differentiating between pathologic and traumatic fractures at extremities from metastasis. Materials and Methods: Institutional Review Board approved this retrospective study and informed consent was waived. This study included 49 patients each with pathologic and traumatic fractures at extremities. The patients underwent conventional MRI combined with DWI. For qualitative analysis, two radiologists (R1 and R2) independently reviewed three imaging sets with a crossover design using a 5-point scale and a 3-scale confidence level: DWI plus non-enhanced MRI (NEMR; DW set), NEMR plus contrast-enhanced fat-saturated T1-weighted imaging (CEFST1; CE set), and DWI plus NEMR plus CEFST1 (combined set). McNemar's test was used to compare the diagnostic performances among three sets and perform subgroup analyses (single vs. multiple bone abnormality, absence/presence of extra-osseous mass, and bone enhancement at fracture margin). Results: Compared to the CE set, the combined set showed improved diagnostic accuracy (R1, 84.7 vs. 95.9%; R2, 91.8 vs. 95.9%, p < 0.05) and specificity (R1, 71.4% vs. 93.9%, p < 0.005; R2, 85.7% vs. 98%, p = 0.07), with no difference in sensitivities (p > 0.05). In cases of absent extra-osseous soft tissue mass and present fracture site enhancement, the combined set showed improved accuracy (R1, 82.9-84.4% vs. 95.6-96.3%, p < 0.05; R2, 90.2-91.1% vs. 95.1-95.6%, p < 0.05) and specificity (R1, 68.3-72.9% vs. 92.7-95.8%, p < 0.005; R2, 83.0-85.4% vs. 97.6-98.0%, p = 0.07). Conclusion: Combining DWI with conventional MRI improved the diagnostic accuracy and specificity while retaining sensitivity for differentiating between pathologic and traumatic fractures from metastasis at extremities.

Comparison of Monoexponential, Biexponential, Stretched-Exponential, and Kurtosis Models of Diffusion-Weighted Imaging in Differentiation of Renal Solid Masses

  • Jianjian Zhang;Shiteng Suo;Guiqin Liu;Shan Zhang;Zizhou Zhao;Jianrong Xu;Guangyu Wu
    • Korean Journal of Radiology
    • /
    • v.20 no.5
    • /
    • pp.791-800
    • /
    • 2019
  • Objective: To compare various models of diffusion-weighted imaging including monoexponential apparent diffusion coefficient (ADC), biexponential (fast diffusion coefficient [Df], slow diffusion coefficient [Ds], and fraction of fast diffusion), stretched-exponential (distributed diffusion coefficient and anomalous exponent term [α]), and kurtosis (mean diffusivity and mean kurtosis [MK]) models in the differentiation of renal solid masses. Materials and Methods: A total of 81 patients (56 men and 25 women; mean age, 57 years; age range, 30-69 years) with 18 benign and 63 malignant lesions were imaged using 3T diffusion-weighted MRI. Diffusion model selection was investigated in each lesion using the Akaike information criteria. Mann-Whitney U test and receiver operating characteristic (ROC) analysis were used for statistical evaluations. Results: Goodness-of-fit analysis showed that the stretched-exponential model had the highest voxel percentages in benign and malignant lesions (90.7% and 51.4%, respectively). ADC, Ds, and MK showed significant differences between benign and malignant lesions (p < 0.05) and between low- and high-grade clear cell renal cell carcinoma (ccRCC) (p < 0.05). α was significantly lower in the benign group than in the malignant group (p < 0.05). All diffusion measures showed significant differences between ccRCC and non-ccRCC (p < 0.05) except Df and α (p = 0.143 and 0.112, respectively). α showed the highest diagnostic accuracy in differentiating benign and malignant lesions with an area under the ROC curve of 0.923, but none of the parameters from these advanced models revealed significantly better performance over ADC in discriminating subtypes or grades of renal cell carcinoma (RCC) (p > 0.05). Conclusion: Compared with conventional diffusion parameters, α may provide additional information for differentiating benign and malignant renal masses, while ADC remains the most valuable parameter for differentiation of RCC subtypes and for ccRCC grading.

Hippocampal Sclerosis: Correlation of MR Imaging Findings with Surgical Outcome

  • Yoon Hee Kim;Kee-Hyun Chang;Sun-Won Park;Young Whan Koh;Sang Hyun Lee;In Kyu Yu;Moon Hee Han;Sang Kun Lee;Chun-Kee Chung
    • Korean Journal of Radiology
    • /
    • v.2 no.2
    • /
    • pp.63-67
    • /
    • 2001
  • Objective: Atrophy and a high T2 signal of the hippocampus are known to be the principal MR imaging findings of hippocampal sclerosis. The purpose of this study was to determine whether or not individual MRI findings correlate with surgical outcome in patients with this condition. Materials and Methods: Preoperative MR imaging findings in 57 consecutive patients with pathologically-proven hippocampal sclerosis who underwent anterior temporal lobectomy and were followed-up for 24 months or more were retrospectively reviewed, and the results were compared with the postsurgical outcome (Engel classification). The MR images included routine sagittal T1-weighted and axial T2-weighted spin-echo images, and oblique coronal T1-weighted 3D gradient-echo and T2-weighted 2D fast spin-echo images obtained on either a 1.5 T or 1.0 T unit. The images were visually evaluated by two neuroradiologists blinded to the outcome; their focus was the presence or absence of atrophy and a high T2 hippocampal signal. Results: Hippocampal atrophy was seen in 96% of cases (55/57) [100% (53/53) of the good outcome group (Engel class I and II), and 50% (2/4) of the poor outcome group (class III and IV)]. A high T2 hippocampal signal was seen in 61% of cases (35/57) [62% (33/53) of the good outcome group and 50% (2/4) of the poor outcome group]. All 35 patients with a high T2 signal had hippocampal atrophy. 'Normal' hippocampus, as revealed by MR imaging, occurred in 4% of patients (2/57), both of whom showed a poor outcome (Engel class III). The presence or absence of hippocampal atrophy correlated well with surgical outcome (p<0.01). High T2 signal intensity did not, however, significantly correlate with surgical outcome (p>0.05). Conclusion: Compared with a high T2 hippocampal signal, hippocampal atrophy is more common and correlates better with surgical outcome. For the prediction of this, it thus appears to be the more useful indicator.

  • PDF