• Title/Summary/Keyword: Magnetic Friction

Search Result 173, Processing Time 0.022 seconds

Flexible Docking Mechanism with Error-Compensation Capability for Auto Recharging System of Mobile Robot

  • Roh, Se-Gon;Park, Jae-Hoon;Lee, Young-Hoon;Song, Young-Kouk;Yang, Kwang-Woong;Choi, Moo-Sung;Kim, Hong-Seok;Lee, Ho-Gil;Choi, Hyouk-Ryeol
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.731-739
    • /
    • 2008
  • The docking and recharging system for a mobile robot must guarantee the ability to perform its tasks continuously without human intervention. This paper proposes two docking mechanisms with localization error-compensation capability for an auto recharging system. The mechanisms use friction forces or magnetic forces between the docking parts of the robot and those of the docking station. It is a structure to improve the allowance ranges of lateral and directional docking offsets, in which the robot is able to dock into the docking station. In this paper, auto-recharging system and the features of the proposed mechanisms are verified with experimental results using simple homing method.

Zero Power Levitation Control of Controlled-PM Electromagnet Levitation System by Reduced Order Extended State Observer (최소차원 확장형 상태관측기에 의한 제어형 영구자석 자기 부상 시스템의 제로전력 부상 제어)

  • Kim, Youn-Hyun;Kim, Sol;Lee, Ju
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.9
    • /
    • pp.515-521
    • /
    • 2002
  • This paper presents the scheme that improves control responsibility and stability of the controlled-PM electromagnet levitation system with zero Power controller. A magnetically levitation system is used widely because friction can almost be disappeared. But it is difficult to control due to restraint of controllable area and nonlinear characteristics of electromagnetic force, which is proportioned to a square of the magnetic flux density and is in inverse proportion to a square of the air-gap. So, the application of observer theory in which the levitation system is considered to be a linear dynamic model has resulted in omitting the time dependence on mover's speed. Consequently, the performance of the observer is quite poor during transients. Therefore, this paper proposed the controlled-PM electro-magnetic levitation control method in which the variable load is estimated by using the reduced order extended luenverger observer and its system is controlled at a new zero power equilibrium air-gap position. It is also verified that the proposed control method improve the control performance through simulation and experiment.

Dredging Material High Efficiency Transport Technology Test by Using the Electro Magnetic Field and Development of the Technical Design Manual (전자기장을 이용한 준설토 고효율 이송기술 실증 및 기술 지침 개발)

  • Kim, Dong-Chule;Kim, Yu-Seung;Yea, Chan-Su;Kim, Sun-Bin;Park, Seung-Min
    • Journal of Coastal Disaster Prevention
    • /
    • v.5 no.4
    • /
    • pp.173-182
    • /
    • 2018
  • As the research about increasing the efficiency of dredging soil transport, the technology, which reduce the friction between pipe wall and fluid in the pipe and disturbed generating pipe blockage, has been developed. So for the purpose of applying this technology to real construction site, main test has been tried at the real scale test in field. As a test result, this paper will show 30% flow efficiency increasing by permitted electro magnetic force to the pipe. And test result was evaluated as a ultra sonic velocity profiler. To propose the design technique and the execution manual of the high efficiency dredging material transport technic, this research have confirmed flow status changing depending on a soil material kind under electro-magnetic field and analyze the effect of electro-magnetic field which affects to each dredged soil material transportation. For achieving this research, EMF(Electro-Magnetic Field) generator is installed on the dredger(20,000HP) and through monitored flow status, dredging soil flow rate and sampled material specification is confirmed. Also dredger operating condition is measured and dredger power for soil transportation, hydraulic gradient and flow rate are compared, as transportation efficiency is calculated by this parameter, it is possible to check transportation efficiency improvement depending on each dredged soil material under electro-magnetic field. To verify the technique of dredged soil transfer using electromagnetic field, which is the core technique of the high efficiency dredged soil transfer, and the technique of expert system for pipeline transfer and the flow state. This could lead to a verification of transfer efficiency according to the characteristics of the dredged soil (sand, clay, silt) and the transfer distance (5km, 10km, 15km), which is planned to be used for a technology development of pump power reduction and long-distance transfer applying the high efficiency dredged soil transfer technology.

Magnetic Resonance Elastography (자기 공명 탄성법)

  • Kim, Dong-Hyun;Yang, Jae-Won;Kim, Myeong-Jin
    • Investigative Magnetic Resonance Imaging
    • /
    • v.11 no.1
    • /
    • pp.10-19
    • /
    • 2007
  • Conventional MRI methods using T1-, T2-, diffusion-, perfusion-weighting, and functional imaging rely on characterizing the physical and functional properties of the tissue. In this review, we introduce an imaging modality based on measured the mechanical properties of soft tissue, namely magnetic resonance elastography (MRE). The use of palpation to identify the stiffness of tissue remains a fundamental diagnostic tool. MRE can quantify the stiffness of the tissue thereby providing a objective means to measure the mechanical properties. To accomplish a successful clinical setting using MRE, hardware and software techniques in the area of transducer, pulse sequence, and imaging processing algorithm need to be developed. Transducer, a mechanical vibrator, is the core of MRE application to make wave propagate invivo. For this reason, considerations of the frame of human body, pressure and friction of the interface, and high magnetic field of a MRI system needs to be taken into account when designing a transducer. Given that the wave propagates through human body effectively, developing an appropriate pulse sequence is another important issue in obtaining an optimal image. In this review paper, we introduce the technical aspects needed for MRE experiments and introduce several applications of this new field.

  • PDF

Dynamic Response Analysis of a Flexible Rotor During Impact on Backup Bearings (탄성 로터의 백업베어링 충돌 시 동적 응답 해석)

  • Park, K.J.;Bae, Y.C.
    • Journal of Power System Engineering
    • /
    • v.16 no.3
    • /
    • pp.22-28
    • /
    • 2012
  • Active magnetic bearings(AMBs) present a technology which has many advantages compared to traditional bearing concepts. However, they require backup bearings in order to prevent damages in the event of a system failure. In this study, the dynamics of an AMB supported rotor during impact on backup bearings is studied employing a detailed simulation model. The backup bearings are modeled using an accurate ball bearing model, and the model for a flexible rotor system is described using the finite element approach with the component mode synthesis. Not only the influence of the support stiffness, clearance and friction coefficient on the rotor orbit, but also bearing load are compared for various rotor system parameters. Comparing these results it is shown that the optimum backup bearing system can be applicable for a specific rotor system.

Flexible Docking Mechanism with Error-Compensation Capability for Auto Recharging System (자동충전 시스템을 위한 오차보정이 가능한 유연한 도킹 메커니즘)

  • Roh, Se-Gon;Park, Jae-Hoon;Song, Young-Kook;Yang, Kwang-Woong;Choi, Moo-Sung;Kim, Hong-Seok;Lee, Ho-Gil;Choi, Hyouk-Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.4
    • /
    • pp.289-296
    • /
    • 2007
  • The docking and recharging system for a mobile robot must guarantee the ability of the mobile robot to perform its tasks continuously without human intervention. In this paper, two docking mechanisms are proposed with localization error-compensation capability for the auto recharging system. Friction forces or magnetic forces are used between the docking parts of the docking module and those of the docking station. In addition, an auto recharging system is developed to control the power. Since the system is modularized, it can easily be adapted to other robots.

  • PDF

STEADY NONLINEAR HYDROMAGNETIC FLOW OVER A STRETCHING SHEET WITH VARIABLE THICKNESS AND VARIABLE SURFACE TEMPERATURE

  • Anjali Devi, S.P.;Prakash, M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.3
    • /
    • pp.245-256
    • /
    • 2014
  • This work is focused on the boundary layer and heat transfer characteristics of hydromagnetic flow over a stretching sheet with variable thickness. Steady, two dimensional, nonlinear, laminar flow of an incompressible, viscous and electrically conducting fluid over a stretching sheet with variable thickness and power law velocity in the presence of variable magnetic field and variable temperature is considered. Governing equations of the problem are converted into ordinary differential equations utilizing similarity transformations. The resulting non-linear differential equations are solved numerically by utilizing Nachtsheim-Swigert shooting iterative scheme for satisfaction of asymptotic boundary conditions along with fourth order Runge-Kutta integration method. Numerical computations are carried out for various values of the physical parameters and the effects over the velocity and temperature are analyzed. Numerical values of dimensionless skin friction coefficient and non-dimensional rate of heat transfer are also obtained.

Diagnosis of Iliotibial Band Friction Syndrome and Ultrasound Guided Steroid Injection

  • Hong, Ji Hee;Kim, Ji Sub
    • The Korean Journal of Pain
    • /
    • v.26 no.4
    • /
    • pp.387-391
    • /
    • 2013
  • A 64-year-old woman visited our pain clinic with the pain of right lateral side of thigh for one year. Her pain always started from knee and was radiated to buttock area when symptom was severe. She showed significant tenderness at knee lateral side and local tightness at lateral thigh. Magnetic resonance image of the knee was performed and we could identify high signal intensity of iliotibial band through coronal and axial view. In spite of medication and physical stretching exercise of iliotibial band for one month, she did not show any improvement of pain. To alleviate her symptom, ultrasound guided local corticosteroid injection targeting beneath the iliotibial band was performed. After the procedure, the reduction of pain was significant and there was no need for further management.

리니어모터 스테이지 진직도 보상 제어

  • Gang, Min-Sik;Choe, Jeong-Deok
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2007.06a
    • /
    • pp.11-14
    • /
    • 2007
  • An additive servo-system is developed to improve straightness of linear motor stages. For linear motor stages used in the field of high-precision linear motion process, high straightness accuracy is necessary as well as positioning accuracy in the longitudinal axis. In such cases, machining and assembling cost increases to improve the straightness accuracy. An electro-magnetic actuator which is relatively cost effective than any other conventional servo-systems is suggested to compensate the fixed straightness error. To overcome the compensation error due to modeling error and friction disturbance, a sliding mode control is addressed. The effectiveness of the suggested mechanism and the control are illustrated along with some experimental results.

  • PDF

Precise Control of a Linear Pulse Motor Using Neural Network (신경회로망을 이용한 리니어 펄스 모터의 정밀 제어)

  • Kwon, Young-Kuk;Park, Jung-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.11
    • /
    • pp.987-994
    • /
    • 2000
  • A Linear Pulse Motor (LPM) is a direct drive motor that has good performance in terms of accuracy, velocity and acceleration compared to the conventional rotating system with toothed belts and ball screws. However, since an LPM needs supporting devices which maintain constant air-gap and has strong nonlinearity caused by leakage magnetic flux, friction and cogging, etc., there are many difficulties in improvement on accuracy with conventional control theory. Moreover, when designing the position controller of LPM, the modeling error and load variations has not been considered. In order to compensate these components, the neural network with conventional feedback controller is introduced. This neural network of feedback error learning type changes the current commands to improve position accuracy. As a result of experiments, we observes that more accurate position control is possible compared to conventional controller.

  • PDF