• Title/Summary/Keyword: Magnetic Field Reduction

Search Result 189, Processing Time 0.03 seconds

Measurements of Auditory Evoked Neuromagnetic Fields using Superconducting Quantum Interference Devices (SQUID를 이용한 뇌 청각유발 자장의 측정)

  • 이용호;권혁찬;김진목;박용기
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.4
    • /
    • pp.421-428
    • /
    • 1997
  • Magnetic field sensors made from superconducting quantum interference device (SQUID) are the most sensitive low-frequency sensors available, enabling measurements of extremely weak magnetic fields from the brain. Neuromagnetic measurements allow superior spatial resolution, compared with the present electric measurements, and superior temporal resolution, compared with the fMRl and PET, providing useful informations for the functional diagnoses of the brain. We developed a 4-channel SQUID system for neuromagnetic applications. The main features of the system are its simple readout electronics and compact pickup coil structure. A magnetically shielded room has been constructed for the reduction of environmental magnetic noises. The developed SQUID system has noise level lower than the magnetic noise from the brain. Magnetic field signals of the spontaneous r-rhythm activity and auditory evoked magnetic fields have been measured.

  • PDF

A Design Approach for High Homogeneity Superconducting Magnet with Superconducting Active Shield (고균일 자계발생용 초전도 능동차폐 마그네트의 설계에 관한 연구)

  • Lee, K.H.;Kim, S.D.;Cho, Y.H.;Lee, J.B.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.151-153
    • /
    • 1996
  • An optimal design approach is presented for high homogeneity superconducting magnet with superconducting active shield especially for use in magnetic resonance imaging system. This paper is investigated phenomena for the stray magnetic field to get a basic reduction techniques of the unwanted stray magnetic field from the magnet. The present method obtains optimal coil configuration considering constraints for magnetic field homogeneity and leakage field.

  • PDF

AC Loss Characteristics of Multifilamentary HTS Tapes

  • Amemiya, Naoyuki
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.69-72
    • /
    • 2000
  • AC losses in multifilamentary HTS tapes can be classified to hysteresis loss, coupling loss, and eddy current loss from the viewpoint of their generation mechanism. From the viewpoint of the major magnetic field component generating them, they can be classified to magnetization loss, transport loss, and total loss. Dividing superconductor to fine filaments, twisting filaments bundle and increasing transverse resistivity are effectively reduce magnetization loss and total loss when the external magnetic field is relatively large. Recently, twisted multifilamentary Bi 2223 tapes with pure silver matrix were fabricated and the reduction of magnetization loss was proved experimentally in the parallel magnetic field to the tape wide face. However, when the perpendicular magnetic field is applied, increasing transverse resistivity is required essentially to reduce the AC losses. The transverse resistivity was increased successfully by the introduction of resistive barrier between filaments.

  • PDF

Quasi-3D analysis of Axial Flux Permanent Magnet Rotating Machines using Space Harmonic Methods (공간고조파법을 이용한 축 자속 영구자석 회전기기의 준(準)-3D 특성 해석)

  • Choi, Jang-Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.942-948
    • /
    • 2011
  • This paper deals with characteristic analysis of axial flux permanent magnet (AFPM) machines with axially magnetized PM rotor using quasi-3-D analysis modeling. On the basis of magnetic vector potential and a two-dimensional (2-D) polar-coordinate system, the magnetic field solutions due to various PM rotors are obtained. In particular, 3-D problem, that is, the reduction of magnetic fields near outer and inner radius of the PM is solved by introducing a special function for radial position. And then, the analytical solutions for back-emf and torque are also derived from magnetic field solutions. The predictions are shown in good agreement with those obtained from 3-D finite element analyses (FEA). Finally, it can be judged that analytical solutions for electromagnetic quantities presented in this paper are very useful for the AFPM machines in terms of following items : initial design, sensitivity analysis with design parameters, and estimation of control parameters.

Dynamic response of concrete beams reinforced by Fe2O3 nanoparticles subjected to magnetic field and earthquake load

  • Mohammadian, Hossein;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Earthquakes and Structures
    • /
    • v.13 no.6
    • /
    • pp.589-598
    • /
    • 2017
  • In this paper, dynamic response of the horizontal concrete beam subjected to seismic ground excitation is investigated. The structure is reinforced by $Fe_2O_3$ nanoparticles which have the magnetic properties. The hyperbolic shear deformation beam theory (HSDBT) is used for mathematical modeling of the structure. Based on the Mori-Tanaka model, the effective material properties of concrete beam is calculated considering the agglomeration of $Fe_2O_3$ nanoparticles. Applying energy method and Hamilton's principle, the motion equations are derived. Harmonic differential quadrature method (HDQM) along with Newmark method is utilized for numerical solution of the motion equations. The effects of different parameters such as volume fraction and agglomeration of $Fe_2O_3$ nanoparticles, magnetic field, boundary conditions and geometrical parameters of concrete beam are studied on the dynamic response of the structure. In order to validation of this work, an exact solution is used for comparing the numerical and analytical results. The results indicated that applying magnetic field decreases the of the structure up to 54 percent. In addition, increase too much the magnetic field (Hx>5e8 A/m) does not considerable effect on the reduction of the maximum dynamic displacement.

Cost-effectiveness dynamics and vibration of soft magnetoelastic plate near rectangular current-carrying conductors

  • AliAsghar Moslemi Beirami;Vadim V. Ponkratov;Amir Ebrahim Akbari Baghal;Barno Abdullaeva;Mohammadali Nasrabadi
    • Structural Engineering and Mechanics
    • /
    • v.88 no.2
    • /
    • pp.159-168
    • /
    • 2023
  • Cost-effective high precision hybrid elements are presented in a hierarchical form for dynamic analysis of plates. The costs associated with controlling the vibrations of ferromagnetic plates can be minimized by adequate determination of the amount of electric current and magnetic field. In the present study, the effect of magnetic field and electric current on nonlinear vibrations of ferromagnetic plates is investigated. The general form of Lorentz forces and Maxwell's equations have been considered for the first time to present new relationships for electromagnetic interaction forces with ferromagnetic plates. In order to derive the governing nonlinear differential equations, the theory of third-order shear deformations of three-dimensional plates has been applied along with the von Kármán large deformation strain-displacement relations. Afterward, the nonlinear equations are discretized using the Galerkin method, and the effect of various parameters is investigated. According to the results, electric current and magnetic field have different effects on the equivalent stiffness of ferromagnetic plates. As the electric current increases and the magnetic field decreases, the equivalent stiffness of the plate decreases. This is a phenomenon reported here for the first time. Furthermore, the magnetic field has a more significant effect on the steady-state deflection of the plate compared to the electric current. Increasing the magnetic field and electric current by 10-times results in a reduction of about 350% and an increase of 3.8% in the maximum steady-state deflection, respectively. Furthermore, the nonlinear frequency decreases as time passes, and these changes become more intense as the magnetic field increases.

Cogging Torque Reduction Design of Permanent Magnet Motor Using Analytical Method (해석적인 방법을 이용한 Cogging Torque 저감을 위한 영구자석형 전동기 형상 설계)

  • Fang, Liang;Lee, Byeong-Hwa;Hong, Jung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.676_677
    • /
    • 2009
  • In this paper, an analytical method used for predicting the magnetic field distribution and cogging torque characteristic in a permanent magnet synchronous motor (PMSM) is presented. The magnetic field is analyzed with the space harmonic analysis, and the cogging torque is calculated based on the air-gap field distribution and slot-opening effect considered by relative permeance. The validity of the presented analytical method is confirmed by 2-dimensional finite element analysis (FEA). Then this analytical method combines with response surface methodology (RSM) is applied to the prototype PMSM model rebuilding in order to minimize the cogging torque. Finally, an optimized PMSM model is built and the cogging torque reduction is confirmed by FEA.

  • PDF

The Effect of Magnetic Field Direction on the Imaging Quality of Scanning Electron Microscope

  • Ai, Libo;Bao, Shengxiang;Hu, Yongda;Wang, Xueke;Luo, Chuan
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.49-54
    • /
    • 2017
  • The significant reduction of the image quality caused by the magnetic field of samples is a major problem affecting the application of SEM (scanning electron microscopy) in the analysis of electronic devices. The main reason for this is that the electron trajectory is deflected by the Lorentz force. The usual solution to this problem is degaussing the sample at high temperatures. However, due to the poor heat resistance of some electronic components, it is imperative to find a method that can reduce the impact of magnetic field on the image quality and is straightforward and easy to operate without destroying the sample. In this paper, the influence of different magnetic field directions on the imaging quality was discussed by combining the experiment and software simulation. The principle of the method was studied, and the best observation direction was obtained.

Analysis of an HTS coil for large scale superconducting magnetic energy storage

  • Lee, Ji-Young;Lee, Seyeon;Choi, Kyeongdal;Park, Sang Ho;Hong, Gye-Won;Kim, Sung Soo;Lee, Ji-Kwang;Kim, Woo-Seok
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.2
    • /
    • pp.45-49
    • /
    • 2015
  • It has been well known that a toroid is the inevitable shape for a high temperature superconducting (HTS) coil as a component of a large scale superconducting magnetic energy storage system (SMES) because it is the best option to minimize a magnetic field intensity applied perpendicularly to the HTS wires. Even though a perfect toroid coil does not have a perpendicular magnetic field, for a practical toroid coil composed of many HTS pancake coils, some type of perpendicular magnetic field cannot be avoided, which is a major cause of degradation of the HTS wires. In order to suggest an optimum design solution for an HTS SMES system, we need an accurate, fast, and effective calculation for the magnetic field, mechanical stresses, and stored energy. As a calculation method for these criteria, a numerical calculation such as an finite element method (FEM) has usually been adopted. However, a 3-dimensional FEM can involve complicated calculation and can be relatively time consuming, which leads to very inefficient iterations for an optimal design process. In this paper, we suggested an intuitive and effective way to determine the maximum magnetic field intensity in the HTS coil by using an analytic and statistical calculation method. We were able to achieve a remarkable reduction of the calculation time by using this method. The calculation results using this method for sample model coils were compared with those obtained by conventional numerical method to verify the accuracy and availability of this proposed method. After the successful substitution of this calculation method for the proposed design program, a similar method of determining the maximum mechanical stress in the HTS coil will also be studied as a future work.

Reduction of Leakage Magnetic Fields in Low Frequency WPT System Using Soft Magnetic Materials (연자성체를 이용한 저주파 무선전력전송 시스템의 누설 자기장 저감)

  • Lee, In-Gon;Kim, Nam;Cho, In-Kui;Hong, Ic-Pyo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.1
    • /
    • pp.76-79
    • /
    • 2017
  • This paper presents the electromagnetic shielding structure for low frequency wireless power transfer system with magnetic induction method using soft magnetic materials. Soft magnetic materials have advantages such as high permeability and low magnetic loss, but have undesirable effect of power loss by eddy current. To overcome this, we proposed the patterned soft magnetic material to suppress the eddy current path. For validity of this paper, we simulated the coil transfer efficiency and the radiated electromagnetic field, and fabricated the proposed structure using 79-permalloy. The measured results shows good agreements with the simulated results and reduction of the radiated electromagnetic field compared to commercial ferrite plate.