• 제목/요약/키워드: Magnetic Field MR Fluid Jet Polishing

검색결과 6건 처리시간 0.015초

MR Fluid Jet Polishing 시스템에 의한 Fused Silica Glass 연마특성 고찰 (Investigation of Polishing Characteristics of Fused Silica Glass Using MR Fluid Jet Polishing)

  • 이정원;조용규;조명우
    • 한국생산제조학회지
    • /
    • 제21권5호
    • /
    • pp.761-766
    • /
    • 2012
  • Abrasive fluid jet polishing processes have been used for the polishing of optical surfaces with complex shapes. However, unstable and unpredictable polishing spots can be generated due to the fundamental property of an abrasive fluid jet that it begins to lose its coherence as the jet exits a nozzle. To solve such problems, MR fluid jet polishing has been suggested using a mixture of abrasives and MR fluid whose flow properties can be readily changed according to imposed magnetic field intensity. The MR fluid jet can be stabilized by imposed magnetic fields, thus it can remain collimated and coherent before it impinges upon the workpiece surface. In this study, MR fluid jet polishing characteristics of fused silica glass were investigated according to injection time and magnetic field intensity variations. Material removal rates and 3D profiles of the generated polishing spots were investigated. From the results, it can be confirmed that the developed MR fluid polishing system can be applied for stable and predictable precise polishing of optical parts.

유동해석을 통한 MR fluid jet polishing 시스템의 재료제거 특성 분석 (A study on material removal characteristics of MR fluid jet polishing system through flow analysis)

  • 신봉철;임동욱;이정원
    • Design & Manufacturing
    • /
    • 제13권3호
    • /
    • pp.12-18
    • /
    • 2019
  • Fluid jet polishing is a method of jetting a fluid to polish a concave or free-form surface. However, the fluid jet method is difficult to form a stable polishing spot because of the lack of concentration. In order to solve this problem, MR fluid jet polishing system using an abrasive mixed with an MR fluid whose viscosity changes according to the intensity of a magnetic field is under study. MR fluid jet polishing is not easy to formulate for precise optimal conditions and material removal due to numerous fluid compositions and process conditions. Therefore, in this paper, quantitative data on the factors that have significant influence on the machining conditions are presented using various simulations and the correlation studies are conducted. In order to verify applicability of the fabricated MR fluid jet polishing system by nozzle diameter, the flow pattern and velocity distribution of MR fluid and polishing slurry of MR fluid jet polishing were analyzed by flow analysis and shear stress due to magnetic field changes was analyzed. The MR fluid of the MR fluid jet polishing and the flow pattern and velocity distribution of the polishing slurry were analyzed according to the nozzle diameter and the effects of nozzle diameter on the polishing effect were discussed. The analysis showed that the maximum shear stress was 0.45 mm at the diameter of 0.5 mm, 0.73 mm at 1.0 mm, and 1.24 mm at 1.5 mm. The cross-sectional shape is symmetrical and smooth W-shape is generated, which is consistent with typical fluid spray polishing result. Therefore, it was confirmed that the high-quality surface polishing process can be stably performed using the developed system.

MR Fluid Jet Polishing 시스템을 이용한 금형코어재료 연마특성에 관한 연구 (Polishing Characteristics of a Mold Core Material in MR Fluid Jet Polishing)

  • 이정원;하석재;조용규;조명우;이강희;제태진
    • 소성∙가공
    • /
    • 제22권2호
    • /
    • pp.74-79
    • /
    • 2013
  • The ultra-precision polishing method using MR fluid has come into the spotlight for polishing metals and optical materials. The MR fluid jet polishing process can be controlled using a change of viscosity by an imposed magnetic field. The MR fluid used for polishing process is a mixture of CI particles, DI water, $Na_2CO_3$ and glycerin. The efficiency of polishing depends on parameters such as polishing time, magnetic field, stand-off distance, pressure, etc. In this paper, the MR fluid jet polishing was used to polish nickel and brass mold materials, which is used to fabricate backlight units for 3-D optical devices in mobile display industries. In MR jet polishing, ferromagnetic materials like nickel can decrease the polishing efficiency by interaction with the cohesiveness of the MR fluid more than non-ferromagnetic materials like copper. A series of tests with different polishing times showed that the surface roughness of brass (Ra=1.84 nm) was lower than that of nickel (Ra=2.31 nm) after polishing for 20 minutes.

MR Fluid Jet Polishing 시스템을 위한 분사노즐 및 전자석 모듈 개발 (Development of an Injection Nozzle and an Electromagnet Module for a MR Fluid Jet Polishing System)

  • 이정원;조용규;하석재;신봉철;조명우
    • 한국생산제조학회지
    • /
    • 제21권5호
    • /
    • pp.767-772
    • /
    • 2012
  • Generally, abrasive fluid jet polishing system has been used for polishing of complex shape or freeform surface which has steep local slopes. In the system, abrasive fluid jet is injected through a nozzle at high pressure; however, it is inevitable to lose its coherence as the jet exits a nozzle. This problem causes incorrect polishing results because of unstable and unpredictable workpiece material removal at the impact zone. In order to solve this problem, MR fluid jet polishing method has been developed using a mixture of abrasive and MR fluid which can maintain highly collimated and coherent jet by applied magnetic field. Thus, in this study, an injection nozzle and an electromagnetic module, most important parts in the MR polishing system, were designed and verified by magnetic field and flow analysis. As the results of experiments, it can be confirmed that stable fluid jets for polishing were generated since smooth W-shapes and uniform spot size were observed regardless of standoff distance changes.

비구면 렌즈 몰드 코어 연마를 위한 MR Fluid Jet Polishing System의 경로 제어에 관한 연구 (Path Control of MR Fluid Jet Polishing System for the Polishing of an Aspherical Lens Mold Core)

  • 김기범;조명우;하석재;조용규;송기혁;양지경;Cai Yue;이정원
    • 소성∙가공
    • /
    • 제24권6호
    • /
    • pp.431-436
    • /
    • 2015
  • MR fluid can change viscosity in the presence of a magnetic field. A characteristic of MR fluid is reduced scattering during jetting. For these reasons a MR fluid jet polishing system can be used for ultra-precision polishing. In the current paper, the polishing path was calculated considering the aspherical lens profile equation and the experimental conditions for the MR fluid jet polishing system. Then the polishing of an aspherical lens mold core using the MR fluid jet polishing system with the calculated path control was made and the results were compared before and after polishing.

MR 유체 제트 연마를 이용한 광학유리의 가공성능 (Machining Performance of Optical Glass with Magnetorheological Fluid Jet Polishing)

  • 김원우;김욱배
    • 한국정밀공학회지
    • /
    • 제28권8호
    • /
    • pp.929-935
    • /
    • 2011
  • As a deterministic finishing process for the optical parts having complex surface, machining performance of the magnetorheological(MR) fluid jet polishing of optical glass are studied and compared with a general water jet polishing. First, design of the jet polishing system which has the special electromagnet-nozzle unit for stabilizing the slurry jet based on MR fluid and the change of jet shape as magnetic field is applied are explained. Second, for the BK7 glass, machining spot and its cross section profile are analyzed and the unique effect of MR fluid jet polishing is shown. Third, both material removal depth and surface roughness are explored in order to investigate the polishing performance of MR fluid jet. With the same ceria abrasives and amount in the polishing slurries, MR fluid jet shows superior machining performance compared to water jet and the difference of material removal mechanism and its resulting performance are described.