• Title/Summary/Keyword: Magnetic Field Exposure

Search Result 113, Processing Time 0.021 seconds

Development of the Estimating Equation for Children's High-Exposure to Habitat's Magnetic Field using Particle Swarm Optimization (Particle Swarm Optimization을 이용한 소아고노출 생활자계 추정식 개발)

  • Hwang, Gi-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.5
    • /
    • pp.1085-1092
    • /
    • 2010
  • This paper describes the development of estimating equation for under 16 aged children's exposure to habitat's magnetic field for 24 hours by using particle swarm optimization(PSO) algorithm, which was carried out by using the measured database collected from the exposure survey to Korean habitat's magnetic field as to under 16 aged Korean students such as preschooler, children in elementary school, and children in middle school. Sex, age, residence type, size of habitation site, distance from power line, and power transmission voltage are used as the input data of estimating 24 hour's personal exposure to magnetic field. And distribution of 24 hour's personal exposure to magnetic field, exposure characteristic to magnetic field, and exposure characteristic to magnetic field according to special conditions, are analyzed for under 16 aged children.

Survey on the Personal Magnetic Field Exposure of Sample Koreans from Living Environment (생활환경에서의 표본 한국인의 개인자계 노출량 조사)

  • 주문노;양광호;명성호
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.2
    • /
    • pp.97-102
    • /
    • 2004
  • The objective of this survey is to characterize personal magnetic field exposure of the general population in Korea. Participants for the survey on magnetic field exposure were selected randomly in some occupations. Those wore the magnetic field meter for about 25∼28 hours and the measured data were stored in the meter. In this first step survey, the number of participant is 244 and for the second step, about 400 participants will be surveyed in the near future. The statistics of the 24-hour exposure data are the major concern of this survey. However the survey provided the opportunity to analyze exposures corresponding to different types of activities. It was analyzed by separating periods of time corresponding to the following activities: entire 24-hour period, in bed, at work and by occupation. Therefore the database will be able to be established to analyze the status of personal magnetic field exposure and safety.

A Preliminary Survey on Personal Magnetic Field Exposure of Sample Koreans

  • Yang, Kwang-Ho;Ju, Mun-No;Myung, Sung-Ho
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.12C no.4
    • /
    • pp.195-200
    • /
    • 2002
  • The objective of this survey is to characterize personal magnetic field exposure of the general population in Korea. The participants of the survey on magnetic field exposure were selected randomly in some occupations. The participant wore the magnetic field meter for about 25∼28 hours and the data were stored in the meter. Because this is a preliminary for the main survey, it was done with 36 participants only. For the main survey, about 400 subjects by occupation will be done. The statistics of the 24-hour exposure data are the major concern of this survey However the survey provided the opportunity to analyze exposures corresponding to different types of activities. It was analyzed by separating periods of time corresponding to the following activities: entire 24-hour period, in bed, at work and by occupation.

Sptimum Design of a Uniform Magnetic Field Exposure System for a Small-Sized Animal Study (자계 균일 공간 확보를 위한 소동물 실험용 5G급 자계 발생장치의 최적 설계)

  • 김상범;추장희;이동일;명성호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.7
    • /
    • pp.1194-1203
    • /
    • 2000
  • A magnetic field exposure system that generates 60 Hz magnetic fields from 1 mG to 5 G was designed and constructed for small-sized animal study. In order to investigate as many animals as possible at one series of test, uniform magnetic fields are required at wide living area of the animals. In this article, a cubic shaped field exposure system with three animal living floors was designed, which offers about 50 seating capacity. For calculation of magnetic fields inside the cage, a three-dimensional calculation program was developed. Using this, optimum electric current ratio of inner coil to outer coil and position of each coil were determined. Meanwhile, inductance of the exposure system was calculated for the design of power supply. The field measurement results of the manufactured exposure system showed that the difference between maximum and minimum magnetic field at the testing floors was less than 3%, which strongly demonstrated the field exposure system was good for small sized animal study.

  • PDF

Effects of Magnetic Field Intensities for Various Lengths of Time on Orientation of Fowl Spermatozoa

  • Pham, Du Ngoc;Shinjo, Akihisa;Sunagawa, Katsunori
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.10
    • /
    • pp.1367-1373
    • /
    • 2001
  • This study used fowl sperm from three White Leghom rooster reared at our laboratory. Semen samples were exposed to the magnetic field strengths of from 650 to 5700 Gauss for one. two, or three days to investigate the influence of magnetic field on the orientation of fowl spermatozoa. Fowl spermatozoa were found to orient with their long axis of heads perpendicular to the magnetic field direction. The fowl spermatozoa were initially influenced when magnetic field intensities were from 650 to 5700 Gauss and the highest values (70.67, 72.49 and 71.79%) were found in the 5700 Gauss treatment at one, two, and three days exposure, respectively. Although percentages of the perpendicular oriented fowl spermatozoa increased along with the enhancement of the magnetic field intensity, the degree of orientation was only significantly higher in the treatments having the magnetic field strength from 1500 to 5700 Gauss than that in the control treatment at all exposure time. In addition, the experimental results also showed that the percentages of all orientational types of fowl spermatozoa (perpendicular category including upward perpendicular and downward perpendicular and parallel type consisting of leftward parallel and rightward parallel) in all treatments tended to be stable during exposure time. From the results of this study. it is suggested that (1) the diamagnetic anisotropy of the inside structural components of fowl spermatozoa induce them to orient perpendicular to the magnetic field direction, (2) the degree of orientation increased according to the enhancement of magnetic field strengths, (3) fowl spermatozoa had not an high sensitivity to the magnetic field, and the level of perpendicular orientation of fowl spermatozoa in this study is nearly similar to that of cattle sperm in the study of Suga et al. (2000).

Comparative Study of Coupling Factors for Assessment of Low-Frequency Magnetic Field Exposure

  • Shim, Jae-Hoon;Choi, Min-Soo;Jung, Kyu-Jin;Kwon, Jong-Hwa;Byun, Jin-Kyu
    • Journal of Magnetics
    • /
    • v.21 no.4
    • /
    • pp.516-523
    • /
    • 2016
  • In this paper, coupling factors are calculated based on numerical analysis in order to assess various non-uniform low-frequency magnetic field exposure situations. Two types of non-uniform magnetic field sources are considered; circular coil and parallel wires with balanced currents. For each magnetic field source, source current values are determined so that reference magnetic field magnitude can be measured at the specified point on the human model. Various exposure situations are investigated by changing parameters such as the distance between source and human model, radius of circular coil, and the gap between parallel wires. For equivalent human models, prolate spheroid model and simplified human model from IEC 62311 standard are used. The calculated coupling factor values are compared with those obtained by 2D uniform disk human model, and the dependence of coupling factor on the choice of equivalent human model is analyzed.

Exposure Assessment of Welders to Extremely Low Frequency Magnetic Fields (일부 용접공의 극저주파 자계노출평가)

  • Jeong, Yeon Jun;Hong, Seung Cheol
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.24 no.4
    • /
    • pp.509-517
    • /
    • 2014
  • Objectives: This study was conducted to investigate the patterns of exposure of welders to strong magnetic fields for extended periods of time on the basis of their daily activities as recorded in a logbook. Methods: Male workers whose main job is welding, specifically seven welders occupied with gas tungsten arc welding(GTAW), two performing shielded metal arc welding(SMAW), and ten engaged in gas metal arc welding(GMAW), were measured in terms of the degree to which they were exposed to extremely low frequency(ELF) magnetic fields over 24 hours by using an electromagnetic field meter(EMF meter), as well as based on a daily activity log. Results: The welders were exposed to $1.25{\pm}4.95{\mu}T$ of magnetic field per day on average. For those who spent more than half a day-735.26 minutes, or 51.1% of the day-at work, the figure averages $3.88{\pm}8.85{\mu}T$ with a maximum value of $221.28{\mu}T$. The subject welders spent $338.14{\pm}154.95$ minutes per day at home. During their stays at home, they were exposed to an average of $0.17{\pm}0.06{\mu}T$ with a maximum value of $3.50{\mu}T$. The maximum exposure of $221.28{\mu}T$ occurred when welders performed GMAW. The average exposure reached its highest at $17.71{\pm}6.96{\mu}T$ when conducting SMAW. Magnetic field exposure also depends upon posture: welders who sat while welding were exposed five times more than those who stood during work, and this difference is statistically significant. As for the relationship between distance from the welding power supply and maximum magnetic field exposure, maximum magnetic field exposure decreases as the distance increases. The average magnetic field exposure, in the meantime, showed no significant difference depending on distance. Conclusions: The following were observed through this study: 1) welders, while conducting jobs, are exposed to magnetic fields not only from the welding machine, but also from the surrounding base material due to the current flowing between the welding machine and base material, meaning that they are continuously exposed to a magnetic field; and 2) welders are more exposed to magnetic fields while they sit at a job compared to when they stand up.

Effect of Magnetic Field Exposure on Semen Characteristic and Organ Weight in Mice (자기장이 웅성 생쥐의 정액성상과 장기무게에 미치는 영향)

  • 김용배;박동헌;박춘근;김정익;정희태;양부근
    • Korean Journal of Animal Reproduction
    • /
    • v.26 no.1
    • /
    • pp.53-59
    • /
    • 2002
  • This study were performed to investigate the effect of magnetic field exposure on semen characteristic and the weights of body, reproductive organs and liver, kidney and spleen in mice. In magnetic field exposure for 15 days, sperm concentrations and viability were significantly lower in magnetic field(15.7$\times$10$^{6}$ $m\ell$, 29.3%) than that in control group(25.1$\times$10$^{6}$ $m\ell$, 34.4%)(P<0.05). The proportion of sperm abnormality were significantly increased in magnetic field exposure groups for 15 days than that in control group(P<0.05). The exposure of magnetic field in mice didn't affect the body and reproductive organ weight such as testis, epididymis, vasicular gland and coagulatin gland. The weight in liver and kidney were not affect in magnetic field exposure groups. However, the spleen weight were significantly higher(P<0.05) in group exposed with than without magnetic field. This studies indicate the short or long term magnetic field exposure in mice were noxious effects on the sperm characteristics and spleen weight, but didn't affect body, reproductive organs, and liver and kidney weight.

A Study on the Exposure Assessment of Extremely Low Frequency Magnetic Fields (극저주파 자계의 노출 평가에 대한 연구)

  • Kim, Eung-Sik;Kim, Myeong-Hun;Min, Suk-Won
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.1
    • /
    • pp.33-40
    • /
    • 2017
  • This paper addresses the assessment methods used to evaluate the magnetic exposure of a human to ELF EMF (Extremely Low Frequency Electromagnetic Field) which is caused by the process of power delivery from 60 Hz commercial power. These days the main concern is primarily focused on the magnetic field. For the exposure assessment, both numerical studies and laboratory experiments were studied and the results of the two compared for methodological suitability. The numerical analyses employ the Impedance Method (IM), Boundary Element Method (BEM), and Finite Element Method (FEM) and the laboratory experiments used various human phantom models made with conductivities congruent to human organs and then exposed to uniform/non-uniform magnetic fields to produce eddy currents. Under these conditions a number of examples have been evaluated and the reliability assessed to present the pros and cons of each methodology.

Development of a New Personal Magnetic Field Exposure Estimation Method for Use in Epidemiological EMF Surveys among Children under 17 Years of Age

  • Yang, Kwang-Ho;Ju, Mun-No;Myung, Sung-Ho;Shin, Koo-Yong;Hwang, Gi-Hyun;Park, June-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.376-383
    • /
    • 2012
  • A number of scientific researches are currently being conducted on the potential health hazards of power frequency electric and magnetic field (EMF). There exists a non-objective and psychological belief that they are harmful, although no scientific and objective proof of such exists. This possible health risk from ELF magnetic field (MF) exposure, especially for children under 17 years of age, is currently one of Korea's most highly contested social issues. Therefore, to assess the magnetic field exposure levels of those children in their general living environments, the personal MF exposure levels of 436 subjects were measured for about 6 years using government funding. Using the measured database, estimation formulas were developed to predict personal MF exposure levels. These formulas can serve as valuable tools in estimating 24-hour personal MF exposure levels without directly measuring the exposure. Three types of estimation formulas were developed by applying evolutionary computation methods such as genetic algorithm (GA) and genetic programming (GP). After tuning the database, the final three formulas with the smallest estimation error were selected, where the target estimation error was approximately 0.03 ${\mu}T$. The seven parameters of each of these three formulas are gender (G), age (A), house type (H), house size (HS), distance between the subject's residence and a power line (RD), power line voltage class (KV), and the usage conditions of electric appliances (RULE).