• Title/Summary/Keyword: Magnetic Dependence

Search Result 530, Processing Time 0.033 seconds

Study of the Magnetic Properties on Py Films by Ferromagnetic Resonance Effect

  • Cho, Jae-Hun;Park, Seung-Young;Jo, Young-Hun;Yoon, Jung-Bum;Kim, Duck-Ho;You, Chun-Yeol
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2010.06a
    • /
    • pp.108-109
    • /
    • 2010
  • In summary, the FMR technique was applied to investigate the magnetic properties of Py thin films. Frequency dependence of the resonance field and line width was analyzed using Landau-Lifshitz-Gilbert equation.

  • PDF

Syntheses of Piperidinyloxyl Diradicals Containing Squaric Acid Moieties and Their Magnetic Properties

  • Jeong Soo Kim;Lothar Dulog
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.465-468
    • /
    • 1993
  • Four compounds containing two 2,2,6,6-tetramethylpiperidin-1-yloxyl radicals were synthesized. They are all chemically bonded with squaric moieties. The diradical compounds show fundamentally the paramagnetic behaviors satisfying the theoretical magnetic susceptibility according to Curie's law. A diradical compound of salf-form 4 however shows a relatively strong antiferromagnetic interaction in comparison with other reported organic radicals. The antiferromagnetic interaction of diradical 4 approximates a value of J/k= -50 K by the theoretical analysis of its temperature dependence.

Electrical Transport Properties of Gd0.33Sr0.67FeO3 Ceramics (Gd0.33Sr0.67FeO3 세라믹스의 전기전도 특성)

  • Jung, Woo-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.2 s.285
    • /
    • pp.131-135
    • /
    • 2006
  • In this study, the dielectric, magnetic and transport properties of $Gd_{0.33}Sr_{0.67}FeO_3$ have been analyzed. The dielectric loss anomaly was found to be around 170 K. The activation energy corresponding to relaxation process of this dielectric anomaly was 0.17 eV. From the temperature dependence of the characteristic frequency, we concluded that the elementary process of the dielectric relaxation peak observed is correlated with polaron hopping between $Fe^{3+}\;and\;Fe^{4+}$ ions. The electrical resistivity displayed thermally activated temperature dependence above 200 K with an activation energy of 0.16 eV. In addition, the temperature dependence of thermoelectric power and resistivity suggests that the charge carrier responsible for conduction is strongly localized.

Dependence of Quiet Time Geomagnetic Activity Seasonal Variation on the Solar Magnetic Polarity

  • Oh, Suyeon
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.43-48
    • /
    • 2013
  • The geomagnetic activity shows the semiannual variation stronger in vernal and autumnal equinoxes than in summer and winter solstices. The semiannual variation has been explained by three main hypotheses such as Axial hypothesis, Equinoctial hypothesis, and Russell-McPherron Effect. Many studies using the various geomagnetic indices have done to support three main hypotheses. In recent, Oh & Yi (2011) examined the solar magnetic polarity dependency of the geomagnetic storm occurrence defined by Dst index. They reported that there is no dependency of the semiannual variation on the sign of the solar polar fields. This study examines the solar magnetic polarity dependency of quiet time geomagnetic activity. Using Dxt index (Karinen & Mursula 2005) and Dcx index (Mursula & Karinen 2005) which are recently suggested, in addition to Dst index, we analyze the data of three-year at each solar minimum for eight solar cycles since 1932. As a result, the geomagnetic activity is stronger in the period that the solar magnetic polarity is anti-parallel with the Earth's magnetic polarity. There exists the difference between vernal and autumnal equinoxes regarding the solar magnetic polarity dependency. However, the difference is not statistically significant. Thus, we conclude that there is no solar magnetic polarity dependency of the semiannual variation for quiet time geomagnetic activity.

Electro-Magnetic Properties of Mn-Zn Ferrite Single Crystal with Small Variation of $Fe_2O_3$ Concentration ($Fe_2O_3$ 미량 변화에 따른 Mn-Zn 페라이트 단결정의 전자기적 특성)

  • 제해준;변순천;홍국선;장성도
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.10
    • /
    • pp.791-796
    • /
    • 1993
  • The electro-magnetic properties of the Mn-Zn ferrite single crystal with small variation of Fe2O3 concentration at the high permeability composition, 53mol% Fe2O3-28.5mol% MnO-18.5mol% ZnO, have been studied for the VCR magnetic head application. With the increase of the Fe2O3 concentration, the Fe2+ concentration increased, the specific resistivity decreased, the secondary maximum permeability shifted to the lower temperature, and the initial permeability decreased. It was concluded that the small variation of $\pm$0.5mol% Fe2O3 concentration greatly affected the electro-magnetic properties of Mn-Zn ferrite single crystals. At the composition of 53mol% Fe2O3, the initial permeability was comparatively high (650 at 5MHz) and its temperature dependence was small.

  • PDF

Temperature Dependence of Magnetostriction in Terfenol-D (Terfenol-D의 온도에 따른 자기변형 특성)

  • 박영우;금기경;한승현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.275-278
    • /
    • 2002
  • The performance of Terfenol-D, the commercially available magnetostrictive material, is highly dependent on the prestress, magnetic field intensity and temperature. This paper presents an experimental investigation of the temperature effect on the magnetostriction in Terfenol-D. The effects of both prestress and magnetic field on the magnetostriction are also presented. Experimental results show that both the prestress and magnetic field on the magnetostriction are significant. It is also observed that the displacement decreases slightly to around 40$^{\circ}C$, then increases to 80$^{\circ}C$. It indicates that the displacement decreases due to the reduced magnetization, and increases due to the thermal expansion, as the temperature increases. It means that the reduced magnetization affects more in the displacement change up to 40$^{\circ}C$, and the thermal expansion affects more in the displacement change beyond 40$^{\circ}C$.

  • PDF

New Macroscopic Ferrimagnets in the System Co-TbN

  • Kim, Tae-Wan;Oh, Jung-Keun
    • Journal of Magnetics
    • /
    • v.13 no.1
    • /
    • pp.11-18
    • /
    • 2008
  • This study examines a new macroscopic ferrimagnet, Co-TbN. This ferrimagnet, consisting of two metallic phases, Co and TbN, demonstrated the typical macroscopic ferrimagnet properties of a magnetic compensation point and a negative giant magnetoresistance (GMR). The Co-TbN system with 32% TbN composition showed 0.72% GMR in magnetic fields up to 8 kOe at room temperature and 9% GMR in 40 kOe at 250 K. In the Co-TbN system, GMR exhibited a different dependence on temperature from that of ordinary GMR materials whose negative magnetoresistance decreases with increasing temperature. In contrast to ordinary GMR materials whose negative magnetoresistance decreases with increasing temperature, the GMR effect in the Co-TbN system increased with increasing temperature, due to the increase of ferromagnetic alignment of the Co and TbN in the magnetic field caused by the decreased exchange coupling with increasing temperature.

The Effect of Thicknesses on Magnetic Properties of Fe-Hf-N Soft Magnetic Thin Films (Fe-Hf-N 연자성 박막의 자기적 특성에 미치는 박막 두께의 영향)

  • Choi, Jong-Won;Kang, Kae-Myung
    • Journal of Surface Science and Engineering
    • /
    • v.44 no.6
    • /
    • pp.255-259
    • /
    • 2011
  • The thickness dependence of magnetic properties was experimentally investigated in nanocrystalline Fe-Hf-N thin films fabricated by a RF magnetron sputtering method. In order to investigate the thickness effect on their magnetic properties, the films are prepared with different thickness ranges from 90 nm to 330 nm. It was revealed that the coercivity of the thin film increased with film thickness. On the contrary, the saturation magnetization decreased with film thickness. On the basis of the SEM and TEM, an amorphous phase forms during initial growth stage and it changes to crystalline structure after heat treatment at $550^{\circ}C$. Nanocrystalline Fe-Hf-N particles are also generated.

Evaluation of Microstructures and Mechanical Property of Variously Heat Treated 0.85% Carbon Steel by Magnetic Method (자기적 방법에 의한 0.85% 탄소강의 열처리에 따른 미세조직 및 기계적 성질 평가)

  • Byeon, Jai-Won;Kwun, S.I.
    • Korean Journal of Materials Research
    • /
    • v.13 no.2
    • /
    • pp.81-87
    • /
    • 2003
  • Microstructures and mechanical properties of variously heat treated 0.85% carbon steel(eutectoid steel) were evaluated by magnetic property measurements. Microstructural analysis (pearlite interstellar spacing), measurement of mechanical properties(Rockwell hardness, yield stress, fracture stress) and magnetic properties(coercivity, remanence, hysteresis loss, saturation magnetization) were performed to clarify mutual relationships among these parameters. Water quenched specimens with martensite structure showed much higher coercivity and remanence than air cooled or furnace cooled specimens with pearlite structure. The linear dependence of coercivity and remanence on pearlite interlamellar spacing as well as on Rockwell hardness, yield stress and fracture stress was observed in the pearlitic steel. Hysteresis loss and saturation magnetization showed no distinct trend with pearlite interlamellar spacing.