• 제목/요약/키워드: Magnetic Composite

검색결과 384건 처리시간 0.029초

복합 Ni-Zn Ferrite의 제조 및 전파흡수특성 (Preparation and Microwave Absorbing Characteristics of Ni-Zn Ferrite Composite)

  • 최경구;오재희;김성수;김재묵
    • 한국세라믹학회지
    • /
    • 제29권7호
    • /
    • pp.505-510
    • /
    • 1992
  • The influence of excess iron content (x) and reaction atmosphere on permittivity, permeability and microwave absorbing properties has been investigated in composite specimens embeded with (Ni0.4Zn0.6O)1-x(Fe2O3)1+x powders. A nitrogen atmosphere used for the reaction of the ferrite with excess iron composition (x>0) enhances spinel formation, and thereby increases both the magnetic and the dielectric loss of the ferrite composite. We also investigated the relation between the electromagnetic constants and the absorbing properites using impedance-matching solution maps for zero reflection. It is suggested that a superior microwave absorber can be fabricated through atmosphere and excess iron control during the powder process.

  • PDF

니켈-아연 페라이트 소결체와 복합체의 전파흡수특성 (The Characteristics of Electromagnetic Wave Absorption in Sintered and Composite Ni-Zn Ferrites)

  • 조성백;오재희
    • 한국세라믹학회지
    • /
    • 제32권1호
    • /
    • pp.25-30
    • /
    • 1995
  • The frequenc dependence of magnetic permeability($\mu$r) and dielectric constant($\varepsilon$r) in MHz-GHz frequency range and their relationships with microwave absorbing properties were investigated in sintered and composite Ni-Zn ferrites, respectively. It was confirmed that zero reflection condition was required the real parts of permeability and permittivity in sintered specimen, and the complex permeability, permittivity and dielectric loss tangent in composite specimen. The real part of permittivity varied with the replacement of nickel by manganese in sintered Ni-Zn ferrite. Therefore, we could control the matching frequency and matching thickness.

  • PDF

결합 적분방정식을 이용한 임의 형태 복합구조의 레이더 단면적 산출 (Computation of Radar Cross Section from Arbitrarily Shaped Composite Objects Using Combined Field Integral Equation)

  • 한상호;정백호;윤희상
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권1호
    • /
    • pp.41-46
    • /
    • 2004
  • In this paper, we present a new combined field integral equation (CFIE) formulation for the analysis of electromagnetic scattering from arbitrarily shaped three-dimensional perfectly conducting and piecewise homogeneous dielectric composite body. The conducting/dielectric structures are approximated by planar triangular patches, which have the ability to conform to any geometrical surface. The surface covering the conducting body is replaced by an equivalent surface electric current and the surface of the dielectric by equivalent electric and magnetic currents. The all equivalent currents are approximated in terms of RWG (Rao, Wilton, Glisson) functions. The objective of this paper is to illustrate that the CFIE is a valid methodology in removing defects, which occur at a frequency corresponding to an internal resonance of the structure. Numerical results are presented and compared with solutions obtained using other formulations.

Two collinear Mode-I cracks in piezoelectric/piezomagnetic materials

  • Zhou, Zhen-Gong;Wang, Jia-Zhi;Wu, Lin-Zhi
    • Structural Engineering and Mechanics
    • /
    • 제29권1호
    • /
    • pp.55-75
    • /
    • 2008
  • In this paper, the behavior of two collinear Mode-I cracks in piezoelectric/piezomagnetic materials subjected to a uniform tension loading was investigated by the generalized Almansi's theorem. Through the Fourier transform, the problem can be solved with the help of two pairs of triple integral equations, in which the unknown variables were the jumps of displacements across the crack surfaces. To solve the triple integral equations, the jumps of displacements across the crack surfaces were directly expanded as a series of Jacobi polynomials to obtain the relations among the electric displacement intensity factors, the magnetic flux intensity factors and the stress intensity factors at the crack tips. The interaction of two collinear cracks was also discussed in the present paper.

Magneto-thermo-elastic analysis of a functionally graded conical shell

  • Mehditabar, A.;Alashti, R. Akbari;Pashaei, M.H.
    • Steel and Composite Structures
    • /
    • 제16권1호
    • /
    • pp.77-96
    • /
    • 2014
  • In this paper, magneto-thermo-elastic problem of a thick truncated conical shell immersed in a uniform magnetic field and subjected to internal pressure is investigated. Material properties of the shell including the elastic modulus, magnetic permeability, coefficients of thermal expansion and conduction are assumed to be isotropic and graded through the thickness obeying the simple power law distribution, while the poison's ratio is assumed to be constant. The temperature distribution is assumed to be a function of the thickness direction. Governing equations of the truncated conical shell are derived in terms of components of displacement and thermal fields and discretised with the help of differential quadrature (DQ) method. Results are obtained for different values of power law index of material properties and effects of thermal load on displacement, stress, temperature and magnetic fields are studied. Results of the present method are compared with those of the finite element method.

나노 복합전도체의 전기자기적 특성 연구 (Electromagnetic Properties of Nano Composite Conductor)

  • 이상헌
    • 한국전기전자재료학회논문지
    • /
    • 제29권2호
    • /
    • pp.106-109
    • /
    • 2016
  • The YBaCuO superconducting bulks were prepared by the thermal diffusion process involving the peritectic reaction to investigate the effect on microstructure and superconductivity. All the diffused YBaCuO could be successively separated from superconducting 123 phase by applying the thermal diffusion process. Electromagnetic properties of treated and untreated YBaCuO superconductor were evaluated to investigate the pinning effect. It was confirmed experimentally that a large amount of magnetic flux was trapped in the thermal treated superconducting bulk than that in the untreated one, indicating that the pinning centers of magnetic flux are related closely to the occurrence mechanism of the magnetic effect.

Nonlinear stability of smart nonlocal magneto-electro-thermo-elastic beams with geometric imperfection and piezoelectric phase effects

  • Faleh, Nadhim M.;Abboud, Izz Kadhum;Nori, Amer Fadhel
    • Smart Structures and Systems
    • /
    • 제25권6호
    • /
    • pp.707-717
    • /
    • 2020
  • In this paper, analysis of thermal post-buckling behaviors of sandwich nanobeams with two layers of multi-phase magneto-electro-thermo-elastic (METE) composites have been presented considering geometric imperfection effects. Multi-phase METE material is composed form piezoelectric and piezo-magnetic constituents for which the material properties can be controlled based on the percentages of the constituents. Nonlinear governing equations of sandwich nanobeam are derived based on nonlocal elasticity theory together with classic thin beam model and an analytical solution is provided. It will be shown that post-buckling behaviors of sandwich nanobeam in thermo-electro-magnetic field depend on the constituent's percentages. Buckling temperature of sandwich nanobeam is also affected by nonlocal scale factor, magnetic field intensity and electrical voltage.

Magnetic Behaviors of Isolated Fe-Co-Ni Nanoparticles in a Random Arrangement

  • Yang, Choong Jin;Kim, Kyung Soo;Wu, Jianmin
    • Journal of Magnetics
    • /
    • 제6권3호
    • /
    • pp.94-100
    • /
    • 2001
  • Fe-Co-Ni particles with an average size of 45 and 135 nm are characterized in terms of magnetic phase transformation and magnetic properties at room temperature. BCC structure of Fe-Co-Ni spherical particles can be synthesized from Fe-Co-Ni-Al-Cu precursor films by heating at 600-80$0^{\circ}C$ for the phase separation of Fe-Co rich Fe-Co-Ni particles, followed by a post heating at $600^{\circ}C$ for 5 hours. The average size of nanoparticles was directly determined by the thickness of precursor films. Exchange interactive hysteresis was observed for the nano-composite (Fe-Co-Ni)+(Fe-Ni-Al) films resulting from the short exchange interface between ferromagnetic Fe-Co-Ni particles surrounded by almost papramagnetic Ni-Al-Fe matrix. Arraying the isolated Fe-Co-Ni nano-particles in a random arrangement on $Al_2O_3$substrate the particle assembly showed a behavior of dipole interactive ferromagnetic clusters depending on their volume and inter-particle distance.

  • PDF

Practical Calculation of Iron Loss for Cylindrical Linear Machine

  • Jeong, Sung-In
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.1901-1907
    • /
    • 2018
  • This paper is a study for accurate iron loss calculation of a cylindrical linear machine for free piston engine. This study presents that it is possible to accurately predict power loss in ferromagnetic laminations under magnetic flux by specially considering the dependence of hysteresis, classical, and excess loss components on the magnetic induction derivative. Significant iron loss in the armature core will not only compromise the machine efficiency, but may also result in excessive heating, which could lead to irreversible deterioration in the machine performance. Thus, correct prediction of power losses under a distorted flux waveform is therefore an important prerequisite to machine design, particularly when dealing with large apparatus where stringent efficiency standards are required. Finally, it will be discussed about the iron loss in various materials of cylindrical linear electric machine by geometric and electrical parameters. It will give elaborate information about the perfect design and design rules of cylindrical linear machine and in parallel tools for the calculation, simulation and design will be available.

오버행을 가지는 SMC재질을 이용한 BLDC전동기의 3차원 철손 해석 (3-D Core Loss Calculation in BLDC Motor having Overhang made of SMC Material.)

  • 이상호;이지영;남혁;홍정표;허진;성하경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.1043-1045
    • /
    • 2004
  • This paper deals with the core loss calculation of a BLDC motor made of Soft Magnetic Composite material. Since the teeth of motor partially have overhang in axial direction, 3 - dimensional equivalent magnetic circuit network (3D-EMCN) is used as an analytical method to get flux density of each element. The total core loss is calculated with the magnetic flux density and core loss curves of the SMC material. The calculated result is compared with core loss of the motor without overhang in stator teeth.

  • PDF