• 제목/요약/키워드: Magnetic Circuit Analysis

검색결과 590건 처리시간 0.024초

일체화된 삼상 자속구속형 고온초전도 전류제한기의 동작모드 분석 (Analysis of Operational Modes in Integrated Three-Phase Flux-Lock Type Superconducting Fault Current Limiting)

  • 박충렬;두호익;최효상;한병성
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2006년도 추계학술대회 논문집 Vol.19
    • /
    • pp.186-187
    • /
    • 2006
  • The development of SFCL (Superconducting Fault Current Limiter) is getting more important as the power demand is increased rapidly. Up to now, several kinds of SFCL have been proposed and it is expected that they will be applied to appropriate position considering their own properties. Amongst those proposed SFCL, flux-lock type SFCL using the magnetic cancelation for current limiting has the advantages of overcoming the technical difficulties that other types of SFCLs have. In this paper, the integrated three-phase flux-lock type SFCL was fabricated and its operational modes were investigated through the short circuit tests. The operational mode were to divided into four mode according to the variation of the currents flowing into the secondary winding connected the superconducting elements and the speed of the quench generation. It was expected that the improvement of current limiting characteristics of the SFCL could be possible through control of the operational mode.

  • PDF

터빈 블레이드 모델링을 통한 터빈 발전기 축 시스템의 기계적 토크 응답 분석 (Analysis of Turbine-Generator Shaft System Mechanical Torque Response based on Turbine Blade Modeling)

  • 박지경;정세진;김철환
    • 전기학회논문지
    • /
    • 제64권9호
    • /
    • pp.1269-1275
    • /
    • 2015
  • Turbine-generator torsional response is caused by interaction between electrical transient air-gap torque and mechanical characteristics of turbine-generator shafts. There are various factors that affects torsional interaction such as fault, circuit breaker switching and generator mal-synchronizing, etc. Fortunately, we can easily simulate above torsional interaction phenomena by using ElectroMagnetic Transient Program (EMTP). However, conventional EMTP shows the incomplete response of super- synchronous torsional mode since it does not consider turbine blade section. Therefore, in this paper, we introduced mechanical-electrical analogy for detailed modeling of turbine-generator shaft system including low pressure turbine blade section. In addition, we derived the natural frequencies of modeled turbine-generator shaft system including turbine blade section and analyzed the characteristics of mechanical torque response at shaft coupling and turbine blade root area according to power system balanced/unbalanced faults.

4 축 광픽업 액추에이터의 개발 (Development of a 4-axis optical pickup actuator)

  • 김재은;이경택;홍삼열;고의석;서정교;최인호;민병훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.856-860
    • /
    • 2008
  • Wire-suspensions in the conventional actuators mechanically support the moving part and guarantee the accuracy of the actuator without tangential tilt actuation. However, such a suspension configuration has considerable stiffness in the tangential tilt direction with two additional wire beams for the tangential tilt. Thus, we performed a design sensitivity analysis for the wire-suspension stiffness of 4-axis actuator and controlled the main parameters such as distance among wire-suspensions and wire-suspension length to allow tangential tilt flexibility. The elasticity of frame PCB that supports the moving part by wire-suspensions was also exploited to improve the flexibility of wire-suspension in the tangential tilt direction. A novel suspension structure was devised by establishing eight wire-suspensions at both sides of the moving part for electrical connection to coils. The magnetic circuit according to the proposed 4-axis actuator using multi-polar magnet and coils was also suggested for the generation of electromagnetic forces in the focusing, tracking, radial and tangential tilt directions.

  • PDF

Classification and Analysis of Switched Reluctance Converters

  • Ahn, Jin-Woo;Liang, Jianing;Lee, Dong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • 제5권4호
    • /
    • pp.571-579
    • /
    • 2010
  • This paper reviews and analyzes converters for SRM(Switched Reluctance Motor) drive. Conventional classification focuses on the number of power switches and diodes. It is easy to find the number of semiconductors and the cost by counting the number of active components, but it does not show the important characteristics of a power converter. The voltage ratings for the power switches and diodes are also difficult to identify. This paper proposes a switched reluctance (SR) converter configuration that is classified based on the commutation type and magnetic energy path. The converter has three parts: utility interface, front-end circuit, and power converter. Based on the overview on the conventional SR drive, the most important characteristic of the converter is determined by the topology of front-end in conjunction with the power converter. An SR converter has two parts: front-end and power converter. Inasmuch as the capacitive front-end is widely used for voltage source converters, this paper focuses on topologies for the front-end.

Hybrid Control Strategy of Phase-Shifted Full-Bridge LLC Converter Based on Digital Direct Phase-Shift Control

  • Guo, Bing;Zhang, Yiming;Zhang, Jialin;Gao, Junxia
    • Journal of Power Electronics
    • /
    • 제18권3호
    • /
    • pp.802-816
    • /
    • 2018
  • A digital direct phase-shift control (DDPSC) method based on the phase-shifted full-bridge LLC (PSFB-LLC) converter is presented. This work combines DDPSC with the conventional linear control to obtain a hybrid control strategy that has the advantages of linear control and DDPSC control. The strategy is easy to realize and has good dynamic responses. The PSFB-LLC circuit structure is simple and works in the fixed frequency mode, which is beneficial to magnetic component design; it can realize the ZVS of the switch and the ZCS of the rectifier diode in a wide load range. In this work, the PSFB-LLC converter resonator is analyzed in detail, and the concrete realization scheme of the hybrid control strategy is provided by analyzing the state-plane trajectory and the time-domain model. Finally, a 3 kW prototype is developed, and the feasibility and effectiveness of the DDPSC controller and the hybrid strategy are verified by experimental results.

이동통신 단말기용 통합 영구 자석 형태의 마이크로스피커 개발 (Development of Combined Permanent Magnet Type Microspeakers Used for Mobile Phones)

  • 황상문;이홍주;권중학;황건용;양용창
    • 한국소음진동공학회논문집
    • /
    • 제16권2호
    • /
    • pp.183-189
    • /
    • 2006
  • In mobile phones of multimedia era, microspeakers of high qualify sound are essential parts to generate human voice in speaker phone and MP3 song player. In this paper, two types of microspeakers, outer permanent magnet (PM) and combined PM type, are analyzed using electromagnetic, mechanical and their coupling analysis. For performance comparison, voice coil diameter is chosen as a design parameter to change excitation position and magnet volume for both types. For combined PM type, sound pressure level (SPL) is improved due to increased PM volume compared to outer PM type. Also, with the decreased voice coil diameter for combined PM type, the 1st resonant mode of the diaphragm is more efficiently excited due to concentrative excitation, resulting in lower and broader frequency range. Therefore, it can be said that the combined PM type microspeakers are more advantageous for high performance microspeaker which are essential for multimedia era.

고조파 전류를 이용한 영구자석형 동기 전동기의 토크 리플 저감 (Torque Ripple Reduction for Permanent Magnet Synchronous Motor using Harmonic Current Injection)

  • 권순오;이정종;이근호;홍정표
    • 전기학회논문지
    • /
    • 제58권10호
    • /
    • pp.1930-1935
    • /
    • 2009
  • This paper deals with the torque ripple reduction of permanent magnet synchronous motor using harmonic current injection. Torque ripple of electric motor reduces system stability and performances, therefore efforts to reduce torque ripple are exerted in the design process. Torque ripple can be reduced by appropriate pole/slot combination, skew of rotor or stator, design of magnetic circuit, etc. In addition, torque ripple can be also reduced by input voltage and current, and many researches have been conducted to reduce torque ripple for six-step drive. Torque ripple reduction for current vector controlled permanent magnet synchronous motor also have been conducted and verified by investigating back emf wave form. Torque ripple reduction in this paper started from getting torque profile according to input current and electrical angle calculated by FEA, then instantaneous currents at each electrical angles for constant torque are calculated and applied to experiments. Therefore, 0% of torque ripple can be obtained theoretically with harmonic current injection. In order to maximize the effect of torque ripple reduction, a BLDC motor having high harmonic component of back emf is chosen. With sinusoidal current drive, over 100% of torque ripple is obtained initially, then 0.5 % of torque ripple is obtained by FEA using harmonic current injection. The effect is verified by experiment and the presented method can be effectively applicable to Electric Power Steering(EPS).

철도차량 추진용 Linear Pulse Motor의 축소 모델 해석 및 추력 리플 저감 연구 (Study on the FEA Model of the Linear Pulse Motor for Railway Application and Reduction of Thrust Ripple)

  • 설현수;이강석;정거철;이주
    • 전기학회논문지
    • /
    • 제66권6호
    • /
    • pp.981-987
    • /
    • 2017
  • In this paper, we describe the LPM structure with a two-phase, which is not used previously, and explain its operation principle. In order to predict the accurate performance of LPM reduction model, finite element model was derived and the back EMF of LPM reduction model was measured and compared. In order to investigate the thrust and normal force of the LPM reduction model, a driving circuit capable of applying two-phase pulse currents was constructed and the performance was predicted in conjunction with the finite element analysis model. Finally, the design considering actual LPM size was performed. Since the size of the reduction model is small, the field could be made of a permanent magnet. However, it is almost impossible to manufacture a permanent magnet to match the size and capacity of a real LPM for a vehicle, in terms of cost and writing. Therefore, the actual vehicle LPM was replaced by wound type that generates a magnetic field by applying current to the field winding, and the final model was derived using the reaction surface method.

L-C 공진형 자여자 와전류 브레이크의 파라미터 추출 방법 및 특성연구 (Extraction Method of Parameter of Self Excited Eddy Current Brake Using L-C Resonance and characteristic research)

  • 정태철;조수영;안한웅;정거철;박응석;조현태;이주
    • 조명전기설비학회논문지
    • /
    • 제29권11호
    • /
    • pp.82-88
    • /
    • 2015
  • In recent years, numerous studies have attempted to find and explore the auxiliary brake and the oil pressure type and electrical type are mainly used. However, the model proposed here is to self-excited eddy current brake. The advantage of this is it does not require an external power supply and can be produced to reduce the size than others. This self-eddy current brake consists of RLC circuit so resistance, inductance and capacitance value can be considered a fixed value. But, inductance and resistance value changes depending on the shape, temperature and magnetic alteration. Therefore, in this paper, the focal point is characteristic analysis according to the parameter variations. Also, using this result, this paper explains how to estimate the capacitance.

릴레이 코일을 포함한 자기 공명 방식 무선 전력 전송 시스템의 분석 및 모델링 (Analysis and Modeling of Wireless Power Transfer Systems using Magnetically Coupled Resonator Scheme with Relay Coils)

  • 박희수;권민성;김민지;박현민;구현철
    • 조명전기설비학회논문지
    • /
    • 제28권1호
    • /
    • pp.69-78
    • /
    • 2014
  • In this paper, characteristics of wireless power transfer (WPT) systems using magnetically coupled resonance scheme with relay coils are investigated and modeled. Especially, asymmetric frequency splitting characteristics in over-coupled region of WPT with relays are measured and accurately modeled. Transmitter, receiver, and relay coils are modeled with R, L, C equivalent circuits. Using these circuit models and mutual inductances between coils, a WPT system is described with a linear matrix equation. For under-coupled region, a matrix is simplified considering only mutual inductances between adjacent coils. An analytical transfer characteristic of WPT system vs. distance is extracted using an inverse matrix that is acquired by Gauss elimination method for the simplified matrix. For over-coupled region, a matrix considering mutual inductances between non-adjacent coils is used to predict a frequency splitting characteristics accurately. A 6.3MHz WPT system with relay coils is implemented and measured. An accuracy of the model is investigated by comparing the output of the model with the measured results.