• Title/Summary/Keyword: Magnet Factors

Search Result 100, Processing Time 0.024 seconds

Neuro-Fuzzy Control of Interior Permanent Magnet Synchronous Motors: Stability Analysis and Implementation

  • Dang, Dong Quang;Vu, Nga Thi-Thuy;Choi, Han Ho;Jung, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1439-1450
    • /
    • 2013
  • This paper investigates a robust neuro-fuzzy control (NFC) method which can accurately follow the speed reference of an interior permanent magnet synchronous motor (IPMSM) in the existence of nonlinearities and system uncertainties. A neuro-fuzzy control term is proposed to estimate these nonlinear and uncertain factors, therefore, this difficulty is completely solved. To make the global stability analysis simple and systematic, the time derivative of the quadratic Lyapunov function is selected as the cost function to be minimized. Moreover, the design procedure of the online self-tuning algorithm is comparatively simplified to reduce a computational burden of the NFC. Next, a rotor angular acceleration is obtained through the disturbance observer. The proposed observer-based NFC strategy can achieve better control performance (i.e., less steady-state error, less sensitivity) than the feedback linearization control method even when there exist some uncertainties in the electrical and mechanical parameters. Finally, the validity of the proposed neuro-fuzzy speed controller is confirmed through simulation and experimental studies on a prototype IPMSM drive system with a TMS320F28335 DSP.

Characteristic Study of a Magnet Gear Speed Reducer with a Unified Harmonic Modulator (일체형 고조파 조절기를 갖는 마그네트 기어 감속기의 특성 연구)

  • Lee, Sang Jun;Jung, Kwang Suk
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.3
    • /
    • pp.348-354
    • /
    • 2015
  • Using a magnetic gear, the speed and torque of the driving axis can be decreased and increased, respectively, similar to a mechanical speed reducer. In particular, because the driving side can be isolated mechanically from the load side, the magnetic gear was developed for application with environmental constraints. Of the existing topologies used for the magnet gear, the filtering method of a specified magnetic component is the most competitive. In this paper, a novel unified harmonic modulator is applied to filter the specified component. The torque conversion method using this modulator is described in detail, and the key factors of the modulator are derived from the influence on the resulting torque. The experimental setup was constructed and its torque transmission efficiency measured for varying loads. The transient characteristic from an excessive load is compared with the theoretical simulation.

A study on the contactless generator and recharge system for a bicyle (비접촉식 자전거 발전기 및 충전 시스템 개발에 관한 연구)

  • Park, Wang-Geun;Won, Si-Tae
    • Design & Manufacturing
    • /
    • v.11 no.2
    • /
    • pp.29-36
    • /
    • 2017
  • In this study, the non-contact type bicycle generator system considering the recharge is developed to use the eco-friendly energy source when the bicycle is operating. The following three main factors are considered in this study. One of factors is that the intensity of the rotating magnet is in the range of 2,700~4,300 [Gause]. The next factor is that the separation distance of rotating magnet and bicycle rim is in the range of 1.5-3.0 mm. The last factor is that the pedaling speed is in the range of 55 RPM [Wheel speed 5.6Km]~150 RPM [Wheel speed 15.25Km] consirering with the 5 staged gear transmission. The obtained results are as followed. (1) The generator output voltage gradually increases from 3V to 10V with the pedaling speed increases, at the separation distance is less than 2.5 mm and the operating voltage of the LED lamp is generated at a pedaling speed of 60 RPM or more. (2) The output current of the generator increases from 20mA to 40mA with the pedaling speed increases, at a separation distance is less than 2.0 mm and the operating current of the LED lamp is generated at a pedaling speed of 60 RPM or more. (3) When the separation distance was 3.0 mm, the output voltage and current are significantly lower than those of the bicycle LED lamp is generated. (4) The charging time is expected to be 12.24 ~ 17.65 hours when the magnitude of the magnet is 3,400[Gauss] at a pedaling speed of 55 RPM or more. (5) As a result of this study, it is thought that the non-contact type bicycle generator system considering the recharge can replace the conventional friction power generation system.

A study on the improvement of static characteristic In claw poled permanent magnet stepping motor (Claw Pole 영구자석형 스테핑 모터의 정특성 향상에 관한 연구)

  • Jung, Dae-Sung;Lim, Seung-Bin;Kim, Tae-Heoung;Lee, Ju;Kwon, Ho;Son, Yeoung-Gyu;Choi, Seung-Kil
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1288-1290
    • /
    • 2005
  • This paper analyzed the characteristics of the claw pole PM step motor by using 3D FEM. As the magnetization occurs along the z-axis of the motor, it is necessary to apply 3D FEM for analysis of the claw pole PM step motor. Considering the computation time, however, the number of the analysis model is minimized by using the "Design of Experiments(DOE)". By using the "DOE", efficient analysis was able to be done. To see the effects of the design factors, the 3D FEM is applied only to the selected models. As the design factors, the teeth shape, the number of turns and the permanent magnet overhang was selected.

  • PDF

Foreign Body Removal in Children Using Foley Catheter or Magnet Tube from Gastrointestinal Tract

  • Choe, Jae Young;Choe, Byung-Ho
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.22 no.2
    • /
    • pp.132-141
    • /
    • 2019
  • Foreign body (FB) ingestion of children is a common pediatric emergency requiring medical attention. Pediatric emergency physicians and gastroenterologists often encounter nervous and distressed situations, because of children presenting with this condition in the common clinical practice. When determining the appropriate timing and indications for intervention, physicians should consider multiple patient- and FB-related factors. The utilization of a flexible endoscopy is considered safe and effective to use in these cases, with a high success rate, for the effective extraction of FBs from the gastrointestinal tract of a child. Additionally, a Foley catheter and a magnet-attached Levin tube have been used for decades in the case of FB removal. Although their use has decreased significantly in recent times, these instruments continue to be used for several indications. Using a Foley catheter for this purpose does not require special training and does not necessarily require sedation of the patient or fluoroscopy, which serve as advantages of utilizing this method for foreign object retrieval. An ingested magnet or iron-containing FB can be retrieved using a magnet-attached tube, and can be effective to retrieve an object from any section of the upper gastrointestinal tract that can be reached. Simple and inexpensive devices such as Foley catheters and magnetattached tubes can be used in emergencies such as with the esophageal impaction of disk batteries if endoscopy cannot be performed immediately (e.g., in rural areas and/or in patients presenting at midnight in a facility, especially in those without access to endoscopes or emergency services, or in any situation that warrants urgent removal of a foreign object).

APPLICATION OF ACOUSTIC EMISSION FOR DIAGNOSIS OF QUENCH IN SUPER CONDUCTIVE MAGNET AT CRYOGENIC TEMPERATURE

  • Lee, Joon-Hyun;Lee, Min-Rae;Kwon, Young-Kin;Song, Bong-Min
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.160-165
    • /
    • 2007
  • It is well recently recognized that quench is one of the serious problems for the integrity of superconducting magnets, which is mainly attribute to the rapid temperature rising in the magnet due to some extrinsic factors such as conductor motion, crack initiation etc. In order to apply acoustic emission(AE) technique effectively to monitor and diagnose superconducting magnets, it is essential to identify the sources of acoustic emission. In this paper, an acoustic emission technique has been used to monitor and diagnose quenching phenomenon in racetrack shaped superconducting magnets at cryogenic environment of 4.2K. For these purposes special attention was paid to detect AE signals associated with the quench of superconducting magnets. The characteristics of AE parameters have been analyzed by correlating with quench number, winding tension of superconducting coil and charge rate by transport current.

  • PDF

Improved Flux and Torque Estimators of a Direct Torque Controlled Interior PM Machine with Compensations for Dead-time Effects and Forward Voltage Drops

  • Sayeef, Saad;Rahman, M.F.
    • Journal of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.438-446
    • /
    • 2009
  • The performance of direct torque controlled (DTC) interior permanent magnet (IPM) machines is poor at low speeds due to a few reasons, namely limited accuracy of stator voltage acquisition and the presence of offset and drift components in the acquired signals. Due to factors such as forward voltage drop across switching devices in the three phase inverter and dead-time of the devices, the voltage across the machine terminals differ from the reference voltage vector used to estimate stator flux and electromagnetic torque. This can lead to instability of the IPM drive during low speed operation. Compensation schemes for forward voltage drops and dead-time are proposed and implemented in real-time control, resulting in improved performance of the space vector modulated DTC IPM drive, especially at low speeds. No additional hardware is required for these compensators.

Impact of Eccentricity and Demagnetization Faults on Magnetic Noise Generation in Brushless Permanent Magnet DC Motors

  • Rezig, Ali;Mekideche, Mohammed Rachid;Djerdir, Abdesslem
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.356-363
    • /
    • 2011
  • Vibrations and noise in electrical machines are directly related to the characteristics of the radial forces on one hand, and mechanical behavior on the other [1, 4]. The characteristics of these forces depend on the air gap flux density, which is also influenced by other factors, such as stator slots and poles, saturation level, winding type, and certain faults. The aim of this work is to investigate the effect of eccentricity and demagnetization faults on electromagnetic noise generated by the external surface of Permanent Magnet Synchronous Machine [PMSM]. For this purpose, an analytical electromagnetic vibroacoustic model is developed. The results confirm the effect of eccentricity and demagnetization fault in generating some low modes radial forces.

Heat-resistant Enamel Varinish (내열성 에나멜 바니쉬)

  • Kim, Yang-Kook;Bae, Hun-Jai
    • Applied Chemistry for Engineering
    • /
    • v.4 no.2
    • /
    • pp.264-272
    • /
    • 1993
  • Current research aimed at investigating of heat-resistance of magnet wire to endow miniaturizing electronic equipment with a high efficiency or reliability. Thermal stability of magnet wire has a close relationship with physical properties of polymeric coating that is formed from enamel varnish. Design of heat-resistant enamel varnish and coating technology of varnish solution were briefly described. Some factors which have a thermal effect on wire were discussed through the evaluation method of the wire properties.

  • PDF

System Design Considering the required performance of the Levitation Control in Maglev (자기부상열차의 부상제어 요구 성능을 고려한 시스템의 설계)

  • Jo, Jeong-Min;Lee, Jong-Min;Kang, Byung-Gwan;Park, Sung-Ho;Kim, Cheol-Ho;Choi, Jong-Mook;Kim, Kuk-Jin
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1024-1031
    • /
    • 2008
  • The performance of magnetic levitation controller is affected from not only levitation control algorithm but also the interaction between compositing system, so it is important to design maglev system considering the character of magnetic levitation controller in order to get the required performance of Maglev. The factors affecting the levitation controller of maglev are the dynamics of levitation magnet, the carrying weight of the overall system, the normal force and lateral force of traction motor and rail condition. In this paper the interaction between magnet and vehicle weight is analysed on side of stability of levitation controller in order to get the required performance of levitation controller.

  • PDF