• Title/Summary/Keyword: Magnet Core

Search Result 271, Processing Time 0.024 seconds

Design of slotless BLDC motor using film coil (필름코일을 이용한 슬롯리스형 BLDC 모터의 설계)

  • Kim, Mhan-Joong;Jae, Hwan-Young;Kim, Hak-Won;Sung, Byung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.104-106
    • /
    • 2001
  • In this paper, it is object of design of high efficiency slotless BLDC motor using film coil. Slotless BLDC motor is able to have high efficiency property and low cogging torque, due to magnetization of stator core have constant contribution by slotless core. But it is difficult to make coil winding of slotless BLDC motor. So we make amateur of slotless BLDC motor using film coil. Film coil is fabricated by drilling, electro-plating and etching of copper/insulator/copper plate. In this paper, after design of slotless BLDC motor for moving axial blower, it is fabricated by NdFeB permanent magnet type rotor and film coil.

  • PDF

Effect of Grain Size Control and Binder Additions on the Soft Magnetic Properties of Fe-based Nanocrystalline Powder Cores (Fe계 나노결정 분말코아의 연자성특성에 미치는 입도제어 및 바인더 첨가의 영향)

  • Cho E.K.;Cho H.J.;Kwon H.T.;Cho E.M.;Ryu H.H.;Sohn K.Y.;Park W.W.
    • Journal of Powder Materials
    • /
    • v.13 no.4 s.57
    • /
    • pp.256-262
    • /
    • 2006
  • The amorphous $Fe_{73}Si_{16}B_7Nb_3Cu_1$ alloy strip was pulverized to get a flake-shaped powder after annealing at $425^{\circ}C$ for 90 min and subsequently ground to obtain finer flake-shaped powder by using a ball mill. The powder was mixed with polyimide-based binder of $0.5{\sim}3wt%$, and then the mixture was cold compacted to make a toroidal powder core. After crystallization treatment for 1 hour at $380{\sim}600^{\circ}C$, the powder was transformed from amorphous to nanocrystalline with the grain size of $10{\sim}15nm$. Soft magnetic characteristics of the powder core was optimized at $550{\sim}600^{\circ}C$ with the insulating binder of 3wt%. As a result, the powder core showed the outstanding magnetic properties in terms of core loss and permeability, which were originated from the optimization of the grain size and distribution of the insulating binder.

A study on the effect of the condition number in the magnetic field mapping of the Air-Core solenoid

  • Huang, Li;Lee, Sangjin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.2
    • /
    • pp.31-35
    • /
    • 2015
  • Mapping is a useful tool in the magnetic field analysis and design. In some specific research area, such as the nuclear magnetic resonance (NMR) or the magnetic resonance imaging (MRI), it is important to map the magnetic field in the interesting space with high accuracy. In this paper, an indirect mapping method in the center volume of an air-core solenoid is presented, based on the solution of the Laplace's equation for the field. Through the mathematical analysis on the mapping calculation, we know that the condition number of the matrix, generated by the measurement points, can greatly affect the error of mapping result. Two different arrangement methods of the measurement points in field mapping are described in this paper: helical cylindrical line (HCL) method and parallel cylindrical line (PCL) method. According to the condition number, the HCL method is recommended to measure the field components using one probe. As a simple example, we mapped the magnetic fields in a MRI main magnet system. Comparing the results in the different methods, it is feasible and convenient to apply the condition number to reduce the error in the field mapping calculation. Finally, some guidelines were presented for the magnetic field mapping in the center volume of the air-core solenoid.

Hybrid design method for air-core solenoid with axial homogeneity

  • Huang, Li;Lee, Sangjin;Choi, Sukjin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.1
    • /
    • pp.50-54
    • /
    • 2016
  • In this paper, a hybrid method is proposed to design an air-core superconducting solenoid system for 6 T axial uniform magnetic field using Niobium Titanium (NbTi) superconducting wire. In order to minimize the volume of conductor, the hybrid optimization method including a linear programming and a nonlinear programming was adopted. The feasible space of solenoid is divided by several grids and the magnetic field at target point is approximated by the sum of magnetic field generated by an ideal current loop at the center of each grid. Using the linear programming, a global optimal current distribution in the feasible space can be indicated by non-zero current grids. Furthermore the clusters of the non-zero current grids also give the information of probable solenoids in the feasible space, such as the number, the shape, and so on. Applying these probable solenoids as the initial model, the final practical configuration of solenoids with integer layers can be obtained by the nonlinear programming. The design result illustrates the efficiency and the flexibility of the hybrid method. And this method can also be used for the magnet design which is required the high homogeneity within several ppm (parts per million).

Spindle Motors using SMC for HDD (SMC를 이용한 HDD용 스펀들모터)

  • Kim, Sang-Uk;Kim, Jin-Hwan;Kim, Yong-Geun;Kim, Bo-Youl;Kim, Young-Bong
    • Proceedings of the KIEE Conference
    • /
    • 2005.10a
    • /
    • pp.150-154
    • /
    • 2005
  • This paper is presented for the development of the brushless DC(BLDC) spindle motors for hard disk drives. A new BLDC Motor has the use of insulated, compacted, iron powder for the armature core material of BLDC motors. Insulated iron powder in this paper is generally called soft magnet composite(SMC). The SMC is used for the stator of the motor instead of the laminated steel core. The motor used by SMC can have the good advantages in condition of the high frequency input power and small sized motor. It gets much more high efficiency than laminated steel core at same input power. The proposed motor has a technique of speed sensorless control. Experimental results show the performance of the proposed BLDC spindle motors for an HDD.

  • PDF

Analysis on Harmonic Loss of IPMSM for the Variable DC-link Voltage through the FEM-Control Coupled Analysis

  • Park, Hyun Soo;Jeung, Tae Chul;Lee, Jae Kwang;Lee, Byoung Kuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.225-229
    • /
    • 2017
  • This paper describes the loss analysis based on load conditions of the air conditioning compressor motors using variable dc-link voltage. The losses of PMSM (Permanent Magnet Synchronous Motor) should be analyzed by the PWM (Pulse Width Modulation) output of inverter. The harmonic loss by the PWM cannot consider that using the current source analysis of the inverter. In addition, when the voltage of dc-link is variable with the condition of variable speed and load conditions in motor, the losses of motor are also changeable, however it is hard to analyze those losses by only electromagnetic finite element method (FEM). Therefore, this paper proposes the analysis method considering the carrier frequency of the inverter and the varying state of the dc-link voltage through the FEM-control coupled analysis. Using proposed analysis method, additional core loss and eddy current loss of permanent magnet caused by PWM could be analyzed. Finally, the validity of the proposed analysis method is verified through the comparison the result of coupled analysis with experiment.

A study on Optimization of the Design Variables of Linear Motor Using Genetic Algorithm (유전알고리즘을 이용한 리니어모터의 설계변수 최적화에 관한 연구)

  • Joo, Sang-Hyun;Jung, Jae-Han;Lee, Sang-Ryong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.5
    • /
    • pp.110-117
    • /
    • 2002
  • This paper proposes a optimization of the design variables of linear motor for the improvement of thrust. Especially, this paper treats the shoe, which can be good to flow of a magnetic flux in linear motor. Firstly, this paper uses a space harmonic analysis method(SHAM) based on Fourier series, for analyzing the characteristics of core type linear motor, including slot structure and shoe. And compare the magnetic flux densities of linear motor at air gap with the results of the SHAM and the Finite Element Method(FEM). Secondly, this paper uses a genetic algorithm, which is good to find the global solutions. The design variables are the pole pitch of magnet, the pitch of slot, the height of slot, the width of shoe and the width of magnet. The maximum thrust with optimum design variables is about 247 N which is improved about 16%.

Acoustic Noise and Vibration Reduction of Coreless Brushless DC Motors with an Air Dynamic Bearing

  • Yang, lee-Woo;Kim, Young-Seok;Kim, Sang-Uk
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.255-265
    • /
    • 2009
  • This paper presents the acoustic noise and mechanical vibration reduction of a coreless brushless DC motor with an air dynamic bearing used in a digital lightening processor. The coreless brushless DC motor does not have a stator yoke or stator slot to remove the unbalanced force caused by the interaction between the stator yoke and the rotor magnet. An unbalanced force makes slotless brushless DC motors vibrate and mechanically noisy, and the attractive force between the magnet and the stator yoke increases power consumption. Also, when a coreless brushless DC motor is driven by a $120^{\circ}$ conduction type inverter, high frequency acoustic noise occurs because of the peak components of the phase currents caused by small phase inductance and large phase resistance. In this paper, a core-less brushless DC motor with an air dynamic bearing to remove mechanical vibration and to reduce power consumption is applied to a digital lightening processor. A $180^{\circ}$ conduction type inverter drives it to reduce high frequency acoustic noise. The applied methods are simulated and tested using a manufactured prototype motor with an air dynamic bearing. The experimental results show that a coreless brushless DC motor has characteristics of low power consumption, low mechanical vibration, and low high frequency acoustic noise.

Lumped-Parameter Thermal Analysis and Experimental Validation of Interior IPMSM for Electric Vehicle

  • Chen, Qixu;Zou, Zhongyue
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2276-2283
    • /
    • 2018
  • A 50kW-4000rpm interior permanent magnet synchronous machine (IPMSM) applied to the high-performance electric vehicle (EV) is introduced in this paper. The main work of this paper is that a 2-D T-type lumped-parameter thermal network (LPTN) model is presented for IPMSM temperature rise calculation. Thermal conductance matrix equation is generated based on calculated thermal resistance and loss. Thus the temperature of each node is obtained by solving thermal conductance matrix. Then a 3-D liquid-solid coupling model is built to compare with the 2-D T-type LPTN model. Finally, an experimental platform is established to verify the above-mentioned methods, which obtains the measured efficiency map and current wave at rated load case and overload case. Thermocouple PTC100 is used to measure the temperature of the stator winding and iron core, and the FLUKE infrared-thermal-imager is applied to measure the surface temperature of IPMSM and controller. Test results show that the 2-D T-type LPTN model have a high accuracy to predict each part temperature.

Demagnetization and Iron loss Analysis of the Single-Phase Flux Reversal Machine for High Speed drives (고속 구동용 단상 자속 역전식 전동기의 감자특성 및 철손분석)

  • Kim, Yong-Su;Kwon, Sam-Young;Lee, Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.1
    • /
    • pp.100-110
    • /
    • 2006
  • This paper presents the demagnetization and iron loss analysis of the single phase Flux Reversal Machine. It has a magnetic configuration similar to the switched reluctance machine but with multipole permanent magnets of alternate polarity on each stator salient pole embraced by concentrated coils. But it can be demagnetized by sudden over current and core losses increase because switching frequency is getting faster. This paper show demagnetization of permanent magnet and iron loss characteristic, and proposed a solution.