• 제목/요약/키워드: Magnesium-Aluminium Alloy

검색결과 20건 처리시간 0.021초

고온에서 마그네슘 합금의 크리이프 특성 (Creep characteristic of Mg alloy at high temperature)

  • 안정오;박경도;곽재섭;강대민
    • 한국금형공학회:학술대회논문집
    • /
    • 한국금형공학회 2008년도 하계 학술대회
    • /
    • pp.39-44
    • /
    • 2008
  • Magnesium alloys have given high attention to the industry of light-weigh as automobile and electronics with aluminium, titanium and composite alloys due to their high strength, low specific density and good damping characteristics. But the magnesium contained structures under high temperature have the problems related to creep deformation and rupture life, which is a reason of developing the new material against creep deformation to use them safely. The purpose of this study is to predict the creep deformation mechanism and rupture time of AZ31 magnesium alloy. For this, creep tests of AZ31 magnesium alloy were done under constant creep load and temperature with the equipment including automatic temperature controller with acquisition computer. The apparent activation energy Qc and the applied stress exponent n, rupture life have been determined during creep of AZ31 Mg alloy over the temperature range of $150^{\circ}C$ to $300^{\circ}C$. In order to investigate the creep behavior. Constant load creep tests were carried out in the equipment including automatic temperature controller, whose data are sent to computer. At around the temperature of $150^{\circ}C{\sim}300^{\circ}C$ the creep behavior obeyed a simple power-law relating steady state creep rate to applied stress and the activation energy for the creep deformation was nearly equal and a little low, respectively, to that of the self diffusion of Mg alloy.

  • PDF

360 Wh급 퍼스널 모빌리티용 리튬이온 배터리 팩의 열전달 특성에 관한 연구 (Numerical Study on the Heat Transfer Characteristics of 360 Wh Li-ion Battery Pack for Personal Mobility)

  • 김대완;서재형;김학민;이무연
    • 한국산학기술학회논문지
    • /
    • 제18권8호
    • /
    • pp.1-7
    • /
    • 2017
  • 본 논문은 퍼스널 모빌리티에 사용되는 360 Wh급 리튬이온 배터리 팩의 성능 및 안정성 확보를 위하여 리튬이온 배터리 팩의 열전달 특성에 관하여 상용수치해석 프로그램인 ANSYS v17.0의 CFX를 이용하여 수치적으로 연구하였다. 이를 위하여 퍼스널 모빌리티에 사용되는 360 Wh급 리튬이온 배터리 팩의 배터리 셀 배열을 4가지 경우로 변경하고, 배터리 셀 홀더에 사용되는 재질과 배터리 팩 케이스에 사용되는 재질을 각각 Polypropylene, Aluminium, Magnesium alloy로 변경하였다. 그 결과 배터리 평균 온도는 배터리 셀 배열이 Model 2 일 때 가장 낮게 예측되었으며, 배터리 셀 홀더와 배터리 팩 케이스 재질 변경에 따른 배터리 평균 온도는 대부분의 경우 Aluminium 일 때 가장 낮게 예측되었다. 퍼스널 모빌리티에 사용되는 360 Wh급 리튬이온 배터리 팩의 열전달 성능은 배터리 셀 배열과 배터리 팩 케이스 재질에 많은 영향을 받았으며, 배터리 셀 배열 Model 2와 배터리 팩 케이스 재질이 Aluminium 일 때 가장 높았다.

AM50 마그네슘 합금의 다이캐스팅 공정에 관한 연구 (A Study on the Die-casting Process of AM50 Magnesium Alloy)

  • 장창우;김순국;한수훈;서용권;강충길;이준희;박준홍
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.415-418
    • /
    • 2005
  • In recent years, Magnesium (Mg) and its alloys have become a center of special interest in the automotive industry. Due to their high specific mechanical properties, they offer a significant weight saving potential in modem vehicle constructions. Most Mg alloys show very good machinability and processability, and even the most complicated die casting parts can be easily produced. The die casting process is a fast production method capable of a high degree of automation for which certain Mg alloys are ideally suited. Although Mg alloys are fulfilling the demands for low specific weight materials with excellent machining and casting abilities, they are still not used in die casting process to the same extent as the competing material aluminium. One of the reasons is that effects of various forming variables for die casting process is not closely examined from the viewpoint of die design. In this study, step die and flowability tests for AM60 were performed by die casting process according to various combination of casting pressure and plunger velocity. Microstructure and Victors hardness tests were examined and performed for each specimen to verify effects of forming conditions.

  • PDF

Mg-Al계 합금의 기계적 성질에 미치는 Al의 영향 (The effects of aluminium contents on the mechanical properties of magnesium-aluminium alloy)

  • 맹완영;백정하;오인상;남태운
    • 열처리공학회지
    • /
    • 제7권2호
    • /
    • pp.139-146
    • /
    • 1994
  • In the molten state, magnesium alloys vigousey react with oxygen in the air, is protected from oxidation and burning by the addition of $SF_6$ to $CO_2$ atmosphere over the melt. The mechanical properties and metallographic examinatin have made of Mg-Al alloys containing 3, 6, 9% in the solution treated state and precipitated state, comparing mechanical properties obtained during unidirectional solidification with me chanical properties obtained during conventional casting. For a given solution treatment, a higher aluminum contents produce more or less fine grains in conventional casting. For a given artifical aging treatment, a higher aluminum contents produces much precitates at the grain boundary as well as within the grain in unidirectional solidification. As a result of this experiment, for a given heat treatment, the higher is aluminum contents the higher is the ultimate tensile strength, yield strength, hardness while the lower the elongation. Also the mechanical properties of unidirectional solidification is larger than that of conventional casting.

  • PDF

Precursor Events in Environmentally Assisted Cracking Behaviour of Light Metals

  • Raja, V.S.
    • Corrosion Science and Technology
    • /
    • 제15권4호
    • /
    • pp.153-158
    • /
    • 2016
  • Light metal alloys of Mg, Ti, and Al undergo environmentally assisted cracking (EAC). Passive film breakdown and pitting are not only precursor events for stress corrosion, but can accelerate hydrogen evolution that is responsible for hydrogen embrittlement. This is clearly demonstrated in the case of Mg and Ti alloys. The so-called innocuous precipitates, which do not directly participate in either alloy strengthening or EAC can be effective precursors for initiating EAC. This aspect is highlighted using high strength aluminium alloys. Such behaviours lead to a paradigm shift in the design of alloys with resistance to EAC.

경량화 소재의 반용융 및 주조/단조기술 (Semi-Solid Forming, Casting and Forging Technologies of Lightweight Materials)

  • 강충길;최재찬;배원병
    • 한국정밀공학회지
    • /
    • 제17권4호
    • /
    • pp.7-21
    • /
    • 2000
  • This paper describes an overview of the thixoforming and thixomolding processes. Semi-solid metalworking (SSM), which is called the thixoforming process of aluminium materials, incorporates the elements of both casting and for the manufacture of near net shape parts. The SSM has some advantages such as net shape or near net shape manufacturing, the ability to form thin walls, excellent surface finish, tight tolerance, and excellent dimensional precision. The thixomolding process of Mg alloy (AZ9l) is a combination of two technologies both conventional die casting and plastic injection molding. The feed material used is a machined chip with a geometry of approximately 1 mm square and a length of 2~3 mm. The semi-solid forming (SSF) of high quality aluminium and magnesium parts will be established in the automotive and electronic industry, in the future. The hybrid method of casting/forging has been caused attention. This process uses a preformed material made by casting instead of the wrought material and finishes it by a single forging process. This process is expected to lower costs without sacrificing the mechanical and finishes it by a single forging process. The process is expected to lower costs without sacrificing the mechanical properties. The authors, intending that the casting/forging process contributes to a reduction in production cost of aluminum automotive parts in Korea, describes the feature of the casting/forging process, aluminum alloys suitable for the cast preform, microstructure and mechanical properties of the cast preform, application examples of cast/forging, and further study.

  • PDF

Al-2Zn-0.2Fe-xMg 합금의 물성 및 주조특성에 미치는 Mg함량의 영향 (Effects of Mg Content on the Properties and Casting Characteristics of Al-2Zn-0.2Fe-xMg Alloys)

  • 김정민;박준식;김기태;고세현
    • 한국주조공학회지
    • /
    • 제32권2호
    • /
    • pp.86-90
    • /
    • 2012
  • Aluminium-silicon based casting alloys have received an attention for high electrical and thermal conductivity applications, however relatively low conductivity of Al-Si alloys often limits the application. Efforts have been made to develop new high conductivity aluminium casting alloys containing no or less silicon. In this study Al-Zn-Fe based alloys were selected as the new alloys, and the effect of Mg additions on their properties and casting characteristics were investigated. As the magnesium content was increased, the tensile strength of Al-2Zn-0.2Fe based alloy was remarkably increased, while the electrical conductivity was deteriorated. It was observed that the fluidity of the alloys was generally inversely proportional to the Mg content but the hot cracking resistance was rather proportional to it. Cooling curve analyses were carried out to measure the actual solidification range and dendrite coherency temperature.

Al-Zn-Mg-Cu 합금의 주조성 및 인장특성에 미치는 Mg 및 Cu 첨가량의 영향 (Effects of Mg and Cu Amounts on the Casting Characteristics and Tensile Property of Al-Zn-Mg-Cu Alloys)

  • 김기태;임영석;김정민
    • 한국주조공학회지
    • /
    • 제32권1호
    • /
    • pp.38-43
    • /
    • 2012
  • The effects of Mg and Cu amounts on the casting characteristics and tensile property of Al-Zn-Mg-Cu alloys were investigated for the development of high strength aluminium alloys for gravity mold casting. Increase of copper amounts in Al-6%Zn-3%Mgy% Cu alloys resulted in reduction of the fluidity of these alloys and had little effects on the tensile property of these alloys. Increase of magnesium amounts from 1.0wt% to 3.3wt% in Al-6%Zn-x%Mg-0.5%Cu alloys resulted in reduction of the elongation of these alloys from 12% to 3% and increase of the tensile strength of these alloys from 340MPa to 450MPa, but had little effects on the fluidity of these alloys.

Al-Si-Mg계 합금의 열처리에 의한 미세조직과 경도 변화 (A Study on the Microstructure and Hardness of Al-Si-Mg Alloys upon Heat Treatments)

  • 이세종;이성관;백남익
    • 열처리공학회지
    • /
    • 제13권2호
    • /
    • pp.108-114
    • /
    • 2000
  • The effects of heat treatments in Al-Si-Mg alloys on the microstructure and hardness have been investigated by the optical microscope, scanning electron microscope(SEM), and Rockwell hardness tester. The materials of various compositions are melted in a vacuum induction furnace under argon atmosphere. Five different Al alloys are prepared from commercial purity aluminium, magnesium and Al-25Si alloy. Two types of aging treatments are performed: i) Isothermal aging of the specimens at $150^{\circ}C$, $170^{\circ}C$ and $190^{\circ}C$. ii) Pre-aging of the specimens at $60^{\circ}C$, $80^{\circ}C$ and $100^{\circ}C$, and followed by final-aging at $170^{\circ}C$ and $190^{\circ}C$. After the heat treatments, Rockwell hardness are measured with all the specimens.

  • PDF

용탕가압침투법으로 제조한 ${Al_{18}}{B_4}{O_{33}}$/AS52 Mg기 복합재료의 계면 특성에 미치는 시효의 영향 (Effect of Aging on the Interfacial Characteristics of ${Al_{18}}{B_4}{O_{33}}$/AS52 Mg Matrix Composite by Squeeze infiltration)

  • 박용하;박용호;조경목;박익민
    • 한국주조공학회지
    • /
    • 제28권6호
    • /
    • pp.268-272
    • /
    • 2008
  • Interfacial characteristics of aluminum borate whisker reinforced AS52 matrix composite was investigated. Peak hardness of AS52 composite was obtained aging at $170^{\circ}C$ for 15h and the aging process was accelerated by the presence of the aluminium borate whisker. The MgO layer, which was the interfacial reaction product between the reinforcement and the Mg matrix, was produced with 20 nm thickness in as-cast condition. As the aging time increased, the thickness of the interfacial reaction layer increased to 50 nm in peak aged condition. The nano-indentation test results indicated that the strength of interface was improved by the aging but over-aging degraded the reinforcement and decreased the interfacial strength which resulted in the decrease of overall composite strength.