• 제목/요약/키워드: Magnesium reduction

검색결과 150건 처리시간 0.032초

알루미늄 스페이스 프레임 차량의 구조 최적화 설계 기법 (Structural Design Optimization of the Aluminum Space Frame Vehicle)

  • 강혁;경우민
    • 한국자동차공학회논문집
    • /
    • 제16권1호
    • /
    • pp.175-180
    • /
    • 2008
  • Due to the global environment problems and the consumer's need for higher vehicle performance, it becomes very important for the global car makers to reduce vehicle weight. To reduce vehicle weight, many car makers have tried to use lightweight materials, for example, aluminum, magnesium, and plastics, for the vehicle structures and components. Especially, the ASF(aluminum space frame) is known for the excellent concept of the vehicle to satisfy structural rigidity, safety performance and weight reduction. In this research, the design of experiments and the multi-disciplinary optimization technique were utilized to meet the weight and structural rigidity target of the ASF. For the structural performance of the ASF, the locations and the size of aluminum extruded frames, aluminum cast nodes, and the aluminum sheets were optimized. As a result, the optimization design procedure has been set up to meet both structural and weight target of the ASF, and the assembled ASF showed good structural performance and weight reduction.

RTM공법을 이용한 승용차용 복합재료 휠의 표면정도 향상 및 개발 (Improvement of Surface Quality and Development of Composite Wheel for Passenger Cars Manufactured by RTM)

  • 김포진;이대길
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.54-57
    • /
    • 2003
  • Since passenger cars require five wheels including a spare, the weight reduction of wheels without sacrificing performance is important. Recently, the structured components of cars made of steel are replaced by composites. plastics and other nonmetallic materials such as aluminum and magnesium for weight reduction. From these new tried materials are most promising due to their high specific stiffness and specific strength. The composites manufactured by resin transfer molding (RTM) process has not only low cost for the manufacturing but also reduces the lead time and development because the molds for RTM is easy to manufacture. In this work, composite wheels for passenger cars were designed and manufactured by RTM process. Since surface quality of wheels is important for passenger cars, the optimal stacking sequence for composite wheels was selected considering surface quality and mechanical properties. Also, the manufacturing method for the composite mold was depicted.

  • PDF

숙시닐화에 따른 참깨박 농축 단백질의 성분 변화 (Effect of Succinylation on the Composition of Sesame Protein Concentrates)

  • 김진아;박정륭;차명화;김진;전정례
    • 동아시아식생활학회지
    • /
    • 제6권3호
    • /
    • pp.345-353
    • /
    • 1996
  • Addition of 0.5, 1.0 and 2.0g of succinic anhydride to 2g of sesame protein concentrates succinylated 44.9, 70.0and 83.1% of the available amino groups, respectively. Considerable amount of phytate were removed in all sesame protein concetrates and the highest reduction was obtained by addition of 2.0g of succinic anhydride. Among the minerals investigated, high amount of calcium and magnesium were presented in defatted sesame flour. In the case of calcium, magnesium and iron, the contents were decreased as the degree of succinylation was increased. Most amino acid content of sesame protein concentrates was not changed by succinylation but lysine was slightly decreased. Result of color measurement showed that the higher degree of succinylation, the higher values of L and B were founded.

  • PDF

AM80-xSn 마그네슘 합금의 반응고 주조 및 압출에 따른 미세조직 및 기계적 특성 (Microstructures and Mechanical Properties of AM80-xSn Magnesium Alloys with Semi-Solid casting and Hot Extrusion Process)

  • 김대환;임인택;;임수근
    • 한국주조공학회지
    • /
    • 제36권6호
    • /
    • pp.215-221
    • /
    • 2016
  • In a recent study, the microstructures and mechanical properties of AM80-xSn magnesium alloys with semi solid casting and hot extrusion process were investigated. With increasing Sn content, the amount of ${\beta}$(Mg2Sn) phase increased, while the ${\alpha}-Mg$ dendritic size decreased. The hardness was increased by the Mg2Sn as the Sn content increased. With increasing Sn content, permanent mold cast and semi solid cast AM80 Mg alloy showed less reduction of hardness and also of extruded AM80 Mg alloy after annealing. In the case of the mechanical properties, the extruded semi solid casting AM80 Mg alloy showed higher tensile strength and yield strength with increasing Sn content compared to the extruded permanent mold cast AM80 Mg alloy at room temperature.

Protective Metal Oxide Coatings on Zinc-sulfide-based Phosphors and their Cathodoluminescence Properties

  • Oh, Sung-Il;Lee, Hyo-Sung;Kim, Kwang-Bok;Kang, Jun-Gill
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권12호
    • /
    • pp.3723-3729
    • /
    • 2010
  • We investigated the high-excitation voltage cathodoluminescence (CL) performance of blue light-emitting (ZnS:Ag,Al,Cl) and green light-emitting (ZnS:Cu,Al) phosphors coated with metal oxides ($SiO_2$, $Al_2O_3$, and MgO). Hydrolysis of the metal oxide precursors tetraethoxysilane, aluminum isopropoxide, and magnesium nitrate, with subsequent heat annealing at $400^{\circ}C$, produced $SiO_2$ nanoparticles, an $Al_2O_3$ thin film, and MgO scale-type film, respectively, on the surface of the phosphors. Effects of the phosphor surface coatings on CL intensities and aging behavior of the phosphors were assessed using an accelerating voltage of 12 kV. The MgO thick film coverage exhibited less reduction in initial CL intensity and was most effective in improving aging degradation. Phosphors treated with a low concentration of magnesium nitrate maintained their initial CL intensities without aging degradation for 2000 s. In contrast, the $SiO_2$ and the $Al_2O_3$ coverages were ineffective in improving aging degradation.

마그네슘 합금의 고온 평면변형 압축에서 Pb 첨가에 따른 미세조직 및 집합조직 변화 (Effects of Pb Aaddition on Microstructur and Texture in High Temperature Plane Strain Compression of Magnesium Alloys)

  • 지예빈;윤지민;김권후
    • 열처리공학회지
    • /
    • 제37권1호
    • /
    • pp.23-28
    • /
    • 2024
  • As global warming accelerates, the transportation industry is increasing the use of lightweight materials with the goal of reducing carbon emissions. Magnesium is a suitable material, but its poor formability limits its use, so research is needed to improve it. Rare-earth elements are known to effectively control texture development, but their high cost limits commercial. In this study, changes in microstructure and texture were investigated by adding Pb, which is expected to have a similar effect as rare-earth elements. The material used is Mg-15wt%Pb alloy. Initial specimens were obtained by rolling at 773 K to a rolling reduction of 25% and heat treatment. Afterwards, plane strain compression was performed at 723 K with a strain rate of 5×10-2s-1 and a strain of -0.4 to -1.0. As a result, recrystallized grains were formed within the microstructure, and the main component of the texture changed from (0,0) to (30,26). The maximum axial density was initially 10.01, but decreased to 4.23 after compression.

임베디드 커패시터로의 응용을 위해 상온에서 RF 스퍼터링법에 의한 증착된 bismuth magnesium niobate 다층 박막의 특성평가 (The characteristics of bismuth magnesium niobate multi layers deposited by sputtering at room temperature for appling to embedded capacitor)

  • 안준구;조현진;유택희;박경우;웬지긍;허성기;성낙진;윤순길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2008년도 하계학술대회 논문집 Vol.9
    • /
    • pp.62-62
    • /
    • 2008
  • As micro-system move toward higher speed and miniaturization, requirements for embedding the passive components into printed circuit boards (PCBs) grow consistently. They should be fabricated in smaller size with maintaining and even improving the overall performance. Miniaturization potential steps from the replacement of surface-mount components and the subsequent reduction of the required wiring-board real estate. Among the embedded passive components, capacitors are most widely studied because they are the major components in terms of size and number. Embedding of passive components such as capacitors into polymer-based PCB is becoming an important strategy for electronics miniaturization, device reliability, and manufacturing cost reduction Now days, the dielectric films deposited directly on the polymer substrate are also studied widely. The processing temperature below $200^{\circ}C$ is required for polymer substrates. For a low temperature deposition, bismuth-based pyrochlore materials are known as promising candidate for capacitor $B_2Mg_{2/3}Nb_{4/3}O_7$ ($B_2MN$) multi layers were deposited on Pt/$TiO_2/SiO_2$/Si substrates by radio frequency magnetron sputtering system at room temperature. The physical and structural properties of them are investigated by SEM, AFM, TEM, XPS. The dielectric properties of MIM structured capacitors were evaluated by impedance analyzer (Agilent HP4194A). The leakage current characteristics of MIM structured capacitor were measured by semiconductor parameter analysis (Agilent HP4145B). 200 nm-thick $B_2MN$ muti layer were deposited at room temperature had capacitance density about $1{\mu}F/cm^2$ at 100kHz, dissipation factor of < 1% and dielectric constant of > 100 at 100kHz.

  • PDF

압연조건에 따른 AZ31 마그네슘합금판재의 변형거동 및 미세조직 변화 (Rolling of AZ31 Alloy and Microstructure of Rolled Plates)

  • 하태권;정효태;성환진;박우진
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.63-66
    • /
    • 2006
  • The effect of warm rolling under various conditions on the microstructure and mechanical property was investigated using an AZ31 Mg alloy sheet. Several processing parameters such as initial thickness, thickness reduction by a single pass rolling, rolling temperature, roll speed, and roll temperature were varied to elicit an optimum condition for the warm rolling process of AZ31 Mg alloy. Microstructure and mechanical properties were measured for specimens subjected to rolling experiments of various conditions. Warm rolling of 30% thickness reduction per pass was possible without any side-crack at temperatures as low as $200^{\circ}C$ under the roll speed of 30 m/min. The initial microstructure before rolling was the mixed one consisting of partially recrystallized and cast structures. Grain refinement was found to occur actively during the warm rolling, producing a very fine grain size of 7 mm after 50% reduction in single pass rolling at $200^{\circ}C$. Yield strength of 204MPa, tensile strength of 330MPa and uniform elongation of 32% have been obtained in warm rolled sheets.

  • PDF

1.2GPa급 초고강도강판의 단면 형태에 따른 스프링백에 관한 해석적 평가 및 연구 (Analytical evaluation and study on the springback according to the cross sectional form of 1.2GPa ultra high strength steel plate)

  • 이동환;한성렬;이춘규
    • Design & Manufacturing
    • /
    • 제13권4호
    • /
    • pp.17-22
    • /
    • 2019
  • Currently, studies on weight reduction and fuel efficiency increase are the most important topics in the automotive industry and many studies are under way. Among them, weight reduction is the best way to raise fuel efficiency and solve environmental pollution and resource depletion. Materials such as aluminum, magnesium and carbon curing materials can be found in lightweight materials. Among these, research on improvement of bonding technology and manufacturing method of materials and improvement of material properties through study of ultrahigh strength steel sheet is expected to be the biggest part of material weight reduction. As the strength of the ultra hight strength steel sheet increases during forming, it is difficult to obtain the dimensional accuracy as the elastic restoring force increases compared to the hardness or high strength steel sheet. It is known that the spring back phenomenon is affected by various factors depending on the raw material and processing process. We have conducted analytical evaluations and studies to analyze the springback that occurs according to the cross-sectional shape of the ultra high tensile steel sheet.

Chemical coagulation and sonolysis for total aromatic amines removal from anaerobically pre-treated textile wastewater: A comparative study

  • Verma, Akshaya K.;Bhunia, Puspendu;Dash, Rajesh R.
    • Advances in environmental research
    • /
    • 제3권4호
    • /
    • pp.293-306
    • /
    • 2014
  • The present study primarily focuses on the evaluation of the comparative effect of chemical coagulation and ultrasonication for elimination of aromatic amines (AAs) present in anaerobically pretreated textile wastewater containing different types of dyes including azo dyes. Color and COD reduction was also monitored at the optimized conditions. The production of AAs was measured spectrophotometrically in the form of total aromatic amines (TAAs) and also verified with high performance liquid chromatography (HPLC) selectively. A composite coagulant, magnesium chloride (MC) aided with aluminium chlorohydrate (ACH) in an equal ratio (MC + ACH) was utilized during the coagulation process, which yielded 31% of TAAs removal along with 85% of color and 52% of COD reduction. At optimized power (200 W) and sonication time (5 h), an appreciable TAAs degradation efficiency (85%) was observed along with 51% color reduction and 62% COD removal using ultrasonication. The chromatographic data indicate that sulphanilic acid and benzidine types of aromatic amines were produced after the reductive cleavage of utilized textile dyes, which were effectively mineralized after ultrasonication. The degradation followed the first order kinetics with a correlation coefficient ($R^2$) of 0.89 and a first-order kinetic constant (k) of $0.0073min^{-1}$.