• Title/Summary/Keyword: Magnesium peroxide Marine sediment

Search Result 2, Processing Time 0.011 seconds

Chemical and Biological Analyses of Bay Sediment Where Magnesium Oxide Compounds Are Applied

  • Cho, Daechul;Jiang, Sunny;Kwon, Sung-Hyun
    • Environmental Engineering Research
    • /
    • v.19 no.1
    • /
    • pp.101-105
    • /
    • 2014
  • Three magnesium compounds, $MgO_2$, MgO, and $Mg(OH)_2$, which are supposed to supply oxygen continuously, were applied onto contaminated bay sediment and its ecology in order to activate the local microbial flora. Those compounds were found to reduce chemical oxygen demand (COD), total nitrogen (T-N), and total phosphorus (T-P). Magnesium oxide, in particular, reduced COD by 30% and T-N and T-P considerably. All compounds also suppressed the release of pollutants in the order $MgO_2$, MgO, and $Mg(OH)_2$. Analysis of microbial flora showed that the microbial group treated by $MgO_2$ and $Mg(OH)_2$ was predictably stable; meanwhile, that treated by MgO increased the number of species, but decreased the total number of microorganisms.

Enviro-Chemical Changes in Shoreline Sediment by MgO2 for Enhancement of Indigenous Microbial Activity (토착균주 활성화를 위한 산소발생제 MgO2 투입에 의한 연안저질의 이화학적 성분 변화 관찰)

  • Bae, Hwan-Jin;Cho, Dae-Chul;Kwon, Sung-Hyun
    • Journal of Environmental Science International
    • /
    • v.19 no.5
    • /
    • pp.617-625
    • /
    • 2010
  • Rapid industrialization has brought Nam-Hae area serious environmental problems associated with released oil and other hydrocarbons. In this work, in order to enhance the quality of the shoreline sediment we made enviro-chemical analyses of its substances, TPHs and microbial growth after treating with oxygen releasing compound(ORC) such as $MgO_2$. Total organic compound(TOC) was reduced from 33.45% to 25.1~31.08% meanwhile COD decreased from 27.5~28.9mg/$g{\cdot}dry$ to 19.9~26.1mg/$g{\cdot}dry$ for input of 2~10% $MgO_2$ in 20days. For 10% $MgO_2$ input, TP and TN were reduced by 13.3% and 18.8%, respectively. Most of all TPH was decomposed by max. 42.4% in 21days, and the total viable count of microbes was found to be exponentially increased by 75.9%.