• Title/Summary/Keyword: Magnesium oxysulfate whisker

Search Result 1, Processing Time 0.014 seconds

High Flame Retardancy and High-strength of Polymer Composites with Synergistically Reinforced MOSw and EG

  • Kim, Chowon;Lee, Jinwoo;Yoon, Hyejeong;Suhr, Jonghwan
    • Composites Research
    • /
    • v.35 no.5
    • /
    • pp.359-364
    • /
    • 2022
  • Polymers are inherently vulnerable to flame, which limits their application to various high-tech industries. In addition, environmental regulations restrict the use of halogen-based flame retardants which has best flame-retardant effect. There are inorganic flame retardants and phosphorous flame retardants as representative non-halogen-based flame retardants. However, high content of flame retardants is required to impart high flame retardancy of the polymers, and this leads to a decrease in mechanical properties. In this research, a new approach for inorganic flame retardant-based polymer composites with high mechanical properties and flame retardancy was suggested. Inorganic flame retardants called as magnesium oxysulfate whisker (MOSw) were used in this research. MOSw can extinguish fire by releasing water and non-combustible gases when exposed to flame. In addition, they have reinforcing effect when added into the polymer with its high aspect ratio. Expandable graphite (EG) was used as a flame-retardant supplement by helping to form a more dense char layer. Through this research, it is expected that it can be applied to various industries requiring flame retardancy such as automobile, and architecture by replacing halogen-based flame polymer composites.