• Title/Summary/Keyword: Magnesium oxide

Search Result 252, Processing Time 0.03 seconds

Haze Characteristics of Mica Coated with Magnesium Oxide (산화마그네슘을 코팅한 마이카의 헤이즈 특성)

  • Kang, Kuk-Hyoun;Hyun, Mi-Ho;Lee, Dong-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.888-894
    • /
    • 2015
  • Inorganic composite particles have excellent physical and chemical characteristics and have been applied in various industries. Recently, many studies have examined the optical properties, such as light scattering, refraction, transmission characteristics, by coating organic-inorganic materials on a substrate, such as mica. Mica is widely applied as a pigment, plastics, painted products, and ceramics because of its high chemical stability, durability and non-toxicity. Magnesium oxide has a range of properties, such as high light transmittance, corrosion resistance and non-toxicity, and it is used as an optical material and polymer additives. To use the optical properties of mica and magnesium oxide, mica was coated with magnesium hydroxide by a dissolution and recrystallization process. In this study, the optimal conditions for the haze value of the particles were found by adjusting the amount of precursors and pH. Magnesium hydroxide layers were formed on the surfaces of mica and converted to MgO after calcination at $400^{\circ}C$ for 4 h. The results showed that the value of MgO-coated mica haze can be controlled easily by the amount of the magnesium hydroxide and pH. The optical properties of the inorganic composite powder were analyzed using a hazemeter and the highest haze value was 85.92 % at pH 9. The physicochemical properties of the synthesized composite was analyzed by SEM, XRD, EDS, and PSA.

Effects of Supplementary Blood Meal on Carnosine Content in the Breast Meat and Laying Performance of Old Hens

  • Namgung, N.;Shin, D.H.;Park, S.W.;Paik, I.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.7
    • /
    • pp.946-951
    • /
    • 2010
  • The objective of this research was to evaluate the effects of dietary supplementation of blood meal (BM) as a source of histidine, and magnesium oxide (MgO) as a catalyst of carnosine synthetase, on carnosine (L-Car) content in the chicken breast muscle (CBM), laying performance, and egg quality of spent old hens. Four hundred eighty laying hens (Hy-Line$^{(R)}$ Brown), 95wk old, were allotted randomly into five replicates of six dietary treatments: T1; 100% basal diet, T2; 100% basal diet+MgO, T3; 97.5% basal diet+2.5% BM, T4; 97.5% basal diet+2.5% BM+MgO, T5; 95% basal diet+5% BM, T6; 95% basal diet+5% BM+MgO. Magnesium oxide was added at 0.3% of diets. The layers were fed experimental diets for 5wk. There were no significant differences in the weekly L-Car content in CBM among all treatments during the total experimental period, but some of the contrast comparisions showed higher L-Car in CBM of T6. The L-Car contents linearly decreased (p<0.01 or p<0.05) as the layers got older except in T4 (p>0.05). There were significant differences in egg weight (p<0.01) and soft and broken egg ratio (p<0.05). The control (T1) was highest in egg weight and T6 was lowest in soft and broken egg ratio. Among the parameters of egg quality, there were significant differences in eggshell strength (p<0.01) and egg yolk color (p<0.05). Magnesium oxide supplementation increased the eggshell strength and BM tended to decrease egg yolk color. Eggshell color, eggshell thickness, and Haugh unit were not influenced by BM and MgO. In conclusion, BM and MgO did not significantly influence the L-Car in CBM of spent layers. The L-Car content rapidly decreased as the layers became senescent. Eggshell strength was increased by MgO supplementation.

Effects of Grain Size Distribution in Soil on the Strength Characteristics of Lime-Soil Mixtures (흙의 粒度分捕가 石灰混合土의 强度特性에 미치는 影響)

  • Cho, Seong-Jeong;Kang, Yea-Mook
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.27 no.2
    • /
    • pp.57-71
    • /
    • 1985
  • The characteristics of compaction and unconfined compressive strength were investigated by mixing with lime to all soils adjusted by given percentages of two kinds of clays to sand to obtain the most effective distribution of grain size and the optimum lime content for soil stabilization. In addition, unconfined compressive strength and durability tested by adding of sodium metasilicate, sodium sulfate, sodium carbonate, sodium gydroxide and magnesium oxide to lime-soil mixture mixed with 8 percent lime to adjusted soil having the mixing percentage of 60 percent of cohesive black clay and 40 percent of sand by weight to get the effect and the optimum content of chemicals. The results obtained were as follows; 1.With the addition of more lime, the optimum moisture content was increased, and the maximum dry density was decreased, whereas the more the amount of clay and the less was the maximum drt density. 2. In the soil having more fine grain size the unconfined compressive strength was larger in the earlier stage of curing period, in accordance with the longer period, the mixing percentages of sand to clay showing the maximum unconfined compressive strength, on the basis of 28-day strength, were 60% : 40% (black clay) and 40% : 60% (brown clay) respectively. 3. The reason why the soil adjusted with black clay was remarkably bigger in the unconfined compressive strength than ones adjusted with brown clay for all specimen of lime-soil mixture was the difference in the kind of clay, the amount of chemical compositions the value of pH. Black clay was mainly composed of halloysite that reacted with lime satisfactorily, whereas the main composition of brown clay was kaolinite that was less effect in the enhance of unconfined compressive strength. Also the difference of unconfined compressive strength was because black clay was larger in the amount of composition of calcium oxide and magnesium oxide in the value of pH affecting directly on the unconfined compressive strength of lime-soil mixture than brown clay. 4. In the lime-soil mixture mixed with 8 percent of lime to soil that mixing percentage of sand to black clay was 60% : 40%, on the standard of 7-day strength, the effect of chemical was arranged in the order of magnesium oxide, sodium carbonate, sodium sulfate, sodium hydroxide and sodium metasilicate. 5. The optimum amount of chemical being applicable to the maximum unconfined compressive strength of lime-chemical-soil mixture was 1 percent by weight for air dry soil in the case of adding sodium carbonated and 0.75 percent on sodium hydroxide, the unconfined compressive strength was increased continuously with increase of the amount of chemical up to 2 percent of chemical content is the lime-chemical-soil mixture added sodium metasilicate, sodium sulfate and magnesium oxide. 6. It was considered that the chemical played and accelerant role of early revelation of strength because the rate of increase of unconfined compressive strength of all of lime-chemical-soil mixtures was largest on the 7-day cured specimen. 7. The effect of test on freezing and thawing after adding suitable amount of chemical on the lime-soil mixture mixed with 8 percent of lime to soil that mixing percentage of sand to black clay was 60% : 40% was arranged in the order of magnesium oxide, sodium carbonate, sodium sulfate, sodium metasilicate and sodium hydroxide.

  • PDF

Physical Properties of Magnesium Oxide-Based Adsorption Matrix using Diatomite (산화마그네슘 기반 규조토를 활용한 흡착형 경화체의 물리적 특성)

  • Lee, Won-Gyu;Kyoung, In-Soo;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.05a
    • /
    • pp.184-185
    • /
    • 2019
  • Korea has defined fine dust as a social disaster as the problem of fine dust and air pollution becomes serious. Fine dust is classified as class one carcinogens because it is harmful to human body. When fine dusts enter the human body, they cause bronchial and skin diseases such as respiratory allergies, irritable pneumonia, asthma and atopy. As the air pollution becomes serious, the government is demanding measures to reduce fine dust. The polluted air in the outdoor is introduced into the room, thereby increasing the pollution degree of the indoor air quality. In this study, an adsorption type matrix for the improvement of indoor air quality was produced. Magnesium oxide and magnesium chloride were used as binders and diatomaceous earth was used as a adsorption material.

  • PDF

Mechanism and regulation of body malodor generation (2) -Development of a novel deodorant powder and application as an antiperspirant-

  • Miyazaki, M.;Fujihira, K.;Sadaie, M.;Nishikawa, N.;Kon, R.;Sugiyama, K.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.110-116
    • /
    • 2003
  • We have developed a high performance powder, which has a quenching efficacy not only for short-chain fatty acids and amines, but also for vinyl ketones (l-octen-3-one, cis-l,5-octadien-3-one), newly found as other key compounds in axillary malodor. By investigating various powders known to have a quenching efficacy, we finally developed a highly porous silica bead containing magnesium oxide. We found that the superior deodorant effect performed by this powder was the result of multiple effects due to both an excellent physical adsorption capability from its high porosity and a specific adsorption of vinyl ketones by magnesium in the powder. An antiperspirant formulation containing both this powder and a Morus alba extract showed good efficacy as a deodorant.

  • PDF

Effect of a blend of magnesium oxide on Equine Squamous Gastric Disease in young trotter horses under training

  • Claire Leleu;Anne Courouce
    • Journal of Veterinary Science
    • /
    • v.24 no.6
    • /
    • pp.87.1-87.9
    • /
    • 2023
  • Background: Equine squamous gastric disease (ESGD), as part of the equine gastric ulcer syndrome (EGUS), are common in racing horses. The use of buffering feed supplements to treat and/or prevent gastric ulcers is an option to control this condition. Objective: The purpose of this study was to evaluate the effect of a 30-day supplementation with a blend of magnesium oxide (MgO) on ESGD scores in trotters under training. Methods: Forty-two young trotters were submitted to a gastroscopic evaluation to assess their ESGD score and were randomly assigned in a group supplemented with MgO or in a control group. After 30 days, a second evaluation by gastroscopy was performed. The effect of the MgO supplementation was assessed by comparing the evolution of the ESGD score in supplemented and control groups between day 0 and day 30. Results: The results confirm the high prevalence of EGUS in young Trotters. The supplementation significantly decreased the ESGD scoring in the supplemented group whereas the control group remain unchanged. Conclusion: The oral MgO supplementation was efficient to control ESGD in the population studied.

Studies on Magnesia Production. Production of Magnesium Hydroxide from Bittern and Sea Water (마그네시아 製造에 關한 硏究 간수, 海水로 부터 水酸化마그네슘 製造)

  • Maeng, Jung-Jae;Chang, In-Soon
    • Journal of the Korean Chemical Society
    • /
    • v.9 no.1
    • /
    • pp.49-54
    • /
    • 1965
  • One of the difficult and time consuming problems in the production of magnesia from sea water is a settling rate of magnesium hydroxide. In this experiments, authors attempted to accelerate its settling rate by addition of various sedimenting agents as C.M.C., Separan and Starch, and sought for optimum calcination temperature for domestic dolomite, as alkali source, mole ratio of dolomite milk to bittern. It is observed through experiments that the small amounts of sedimenting agents, C.M.C., Separan, starch, 20 mg/l, 40 mg/l, 400mg/l, respectively increase the settling rate of magnesium hydroxide by 8 times or more. The following conditions resulted in good yield of magnesium hydroxide from sea water with relatively tolerable calcium oxide contaminated for the magnesium clinker. Calcinating temperature, $1,100{\sim}1,200^{\circ}C$, mole ratio of 10% dolomite milk to magnesium salts in sea water or bittern, 1. 2 : 1.

  • PDF

The Effects of Graphite and Magnesium Oxide in Automotive Friction Materials on Friction and Formation of Transfer Film (자동차용 마찰재에 사용되는 흑연과 마그네시아에 따른 전이막과 마찰특성에 관한 연구)

  • Bae, Eun-Gap;Yoon, Jang-Hyuk;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.226-234
    • /
    • 2002
  • A systematic study of the role of transfer films on friction properties was performed with various temperatures in the brake system. An NAO friction material specimens containing 9 ingredients were tested using a pad-on-disk type friction tester A new method of measuring the transfer film thickness was developed by considering the electrical resistance of the transfer film using a 4-point probe technique. The properties of transfer film such as surface morphology and film distribution vaied according to the relative amount of graphite and magnesium oxide. By using SEM, it was possible to obtain information about the chemical composition of the transfer film. Results showed that there detected a threshold value of the relative amount of a two active materials to maintain a certiain thickness of a transfer film. Results also showed that formation of friction layer generated on the friction surface was strongly affected by chemical action of two ingredients during sliding due to chemical reaction of solid lubricants at different interface temperature. The results suggested that no apparent relationship between transfer film thickness and the average friction coefficient was founded and friction characteristics were affected more by the property of the solid lubricant and abrasive in the material.

  • PDF

Effect of Sodium Aluminate Concentration in Electrolyte on the Properties of Anodic Films Formed on AZ31 Mg Alloy by Plasma Electrolytic Oxidation (AZ31 마그네슘 합금의 플라즈마 전해 산화에서 Sodium Aluminate 농도가 산화막 특성에 미치는 영향)

  • Lee, Jong-Seok;Baek, Hong-Gu;Kim, Sung-Wan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.5
    • /
    • pp.227-232
    • /
    • 2012
  • Magnesium alloy have good physical properties such as good castability, good vibration absorption, high strength/weight ratios. Despite the desirable properties, the poor resistance of Mg alloy impedes their use in many various applications. Therefore, magnesium alloy require surface treatment to improve hardness, corrosion and wear resistance. Plasma Electrolytic Oxidation (PEO) is one the surface treatment methods to form oxide layer on Mg alloy in alkali electrolyte. In comparison with Anodizing, there is environmental process having higher hardness and faster deposition rate. In this study, the characteristics of oxide film were examined after coating the AZ31 Mg alloy through the PEO process. We changed concentration of sodium aluminate into $K_2ZrF_6$, KF base electrolyte. The morphologies of the coating layer were characterized by using scanning electron microscopy (SEM). Corrosion resistance also investigated by potentiodynamic polarization analysis. As a result, propertiy of oxide layer were changed by concentration of sodium aluminate. Increasing with concentration of sodium aluminate in electrolyte, the oxidation layer was denser and the pore size was smaller on the surface.

Effect of the Mg Ion Containing Oxide Films on the Biocompatibility of Plasma Electrolytic Oxidized Ti-6Al-4V

  • Lee, Kang;Choe, Han-Cheol
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.135-140
    • /
    • 2016
  • In this study, we prepared magnesium ion containing oxide films formed on the Ti-6Al-4V using plasma electrolytic oxidation (PEO) treatment. Ti-6Al-4V surface was treated using PEO in Mg containing electrolytes at 270V for 5 min. The phase, composition and morphology of the Mg ion containing oxide films were evaluated with X-ray diffraction (XRD), Attenuated total reflectance Fourier transform infrared (ATR-FTIR) and filed-emission scanning electron microscopy (FE-SEM) with energy dispersive X-ray spectrometer (EDS). The biocompatibility of Mg ion containing oxide films was evaluated by immersing in simulated body fluid (SBF). According to surface properties of PEO films, the optimum condition was formed when the applied was 270 V. The PEO films formed in the condition contained the properties of porosity, anatase phase, and near 1.7 Ca(Mg)/P ratio in the oxide film. Our experimental results demonstrate that Mg ion containing oxide promotes bone like apatite nucleation and growth from SBF. The phase and morphologies of bone like apatite were influenced by the Mg ion concentration.