• 제목/요약/키워드: Magnesium alloy sheet

Search Result 139, Processing Time 0.029 seconds

Influence of Hot-Extrusion on Mechanical Properties of AZ31B Magnesium Alloy Sheet (AZ31B 마그네슘 합금의 기계적 특성에 미치는 열간압출의 영향)

  • Kim Yong-Gil;Choi Hak-Kyu;Kang Min-Cheol;Jeong Hae-Yong;Bae Cha-Hurn
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.25-30
    • /
    • 2005
  • The microstructural changes by hot extrusion of AZ31B magnesium alloy were observed, and the relation to the tensile property was examined. The tensile properties as oriented longitudinal(L), half transverse(HT) and long transverse(LT) to the extrusion direction were investigated at $20^{\circ}C,\;100^{\circ}C,\;200^{\circ}C,\;300^{\circ}C\;and\;400^{\circ}C$, respectively. As the results, many recrystallized small grains distributed uniformly in large banded microstructures formed along the extrusion direction. The grain size of as-extruded specimen was around $30\~150\;{\mu}m$. As increasing the test temperature the tensile and yield strength with respect to the angle between the axis of the tensile and the longitudinal direction in extrusion was decreased, but their elongation were increased and their deviation between L and LT specimens have disappeared from $300^{\circ}C$. This mechanical anisotropy was reduced at elevated temperatures and almost disappeared at $400^{\circ}C$. It was considered that the homogenization was occured by the recrystallization and the change of slip system was occurred during tensile test process in elevated temperatures.

Hot Rolling Properties of Non-combustible AZ31-xCa Magnesium Alloys (난연성 AZ31-xCa 마그네슘합금의 열간압연 특성)

  • Yim C. D.;You B. S.;Lee J. S.;Kim W. C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.55-62
    • /
    • 2004
  • In this study, the effects of Ca content and processing variables on hot rolling properties of gravity cast AZ31-xCa alloys were evaluated systematically. The number and length of side crack were decreased with increasing preheating temperature and decreasing reduction ratio per pass and Ca content. The UTS and YS were not strongly dependent on the Ca content but the elongation decreased with increasing Ca content. The decrease of elongation in Ca containing alloys was least when the sheets were fabricated under preheating temperature of $400^{\circ}C$ and reduction ratio per pass of $15\%$. The sheets had the sound external features with little side cracks by homogenization of gravity cast AZ31-xCa alloys before hot rolling. In the cases of AZ31-xCa alloys containing under $1wt.\%$ Ca, the annealed sheets after homogenization and hot rolling had the similar tensile properties to those of AZ31 sheet.

  • PDF

Tool Temperatures to Maximize the Warm Deep-drawability of AZ31B Sheets (AZ31B 판재의 온간 디프드로잉 성형성 극대화를 위한 금형 온도)

  • Choi, S.C.;Kim, H.J.;Kim, H.Y.;Hong, S.M.;Shin, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.66-70
    • /
    • 2008
  • In this study, the formability of AZ31B magnesium alloy sheets was investigated by the analytical and experimental approaches. Tensile tests and limit dome height tests were rallied out at several temperatures between $25^{\circ}C$ and $300^{\circ}C$ to obtain the mechanical properties and forming limit diagram (FLD). The FLD-based criterion considering the strain-path and the blank temperature was used to predict the forming limit in a deep-drawing process of cross-shaped cup by finite element analysis. This criterion proved to be very useful in determining the optimal process conditions such as blank shape, punch velocity, minimum comer radius, fillet size, and so on, through the comparison between FEA and experimental data. In particular, the temperature of each tool that provided the best formability of the blank was determined by coupled temperature-deformation analyses. A practical method that can greatly reduce the forming time by increasing the punch speed during the forming process was suggested.

  • PDF

Plate Forging Process for Near-net Shaping of Mg-alloy Sheet (마그네슘합금 판재 정밀성형을 위한 판단조 공정 연구)

  • Song, Y.H.;Kim, S.J.;Lee, Y.S.;Yoon, E.Y.
    • Transactions of Materials Processing
    • /
    • v.30 no.1
    • /
    • pp.35-42
    • /
    • 2021
  • Magnesium alloys are used in electronic devices such as laptops due to their lightweight features as well as vibration absorption and electromagnetic shielding properties. However, the precision of electronics is limited by the large number of small and precise ribs, the cost-effective manufacture of which requires appropriate technology. Plate forging is an efficient manufacturing process that can address these challenges. In this study, plate forging of magnesium alloys was investigated specifically for the fabrication of laptop cover. The plate forging process with back-pressure was used for near-net shape formation. Finite element analysis was used to select appropriate variables for back-pressure formation to generate ribs of various sizes and shapes without defects. The reliability of the analysis was verified to manufacture the prototype. The effect of back-pressure can be verified via fabrication of prototypes as well as structure and forming analysis based on finite element method. The process design factor of back-pressure increases formability without defects of under-filling and flow-through. Moreover, the tensile strength was maintained even after high temperature plate forging at 370 ℃, and the elongation was improved.

Effect of Heat Treatment on the Corrosion Resistance of the Al-Mg Coated Steel Sheet (열처리가 Al-Mg 코팅 강판의 내식성에 미치는 영향)

  • Jung, Jae-Hun;Yang, Ji-Hoon;Song, Min-A;Kim, Sung-Hwan;Jeong, Jae-In;Lee, Myeong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.4
    • /
    • pp.186-191
    • /
    • 2014
  • Double layer films which consisted of aluminum(Al) and magnesium(Mg) have been prepared by e-beam deposition. The structure, alloy phase, and corrosion resistance of the prepared films were investigated before and after heat treatment. The first (bottom) layer fixed with Al, and the thickness ratio between Al and Mg layers has been changed from 1 : 1 to 5 : 1, respectively. Total thickness of Al-Mg film was fixed at $3{\mu}m$. The cold-rolled steel sheet was used as a substrate. Heat treatment was fulfilled in an nitrogen atmosphere at the temperature of $400^{\circ}C$ for 2, 3 and 10 min. Surface morphology of as-deposited Al-Mg film having Mg top layer showed plate-like structure. The morphology was not changed even after heat treatment. However, cross-sectional morphology of Al-Mg films was drastically changed after heat treatment, especially for the samples heat treated for 10 min. The morphology of as-deposited films showed columnar structure, while featureless structure of the films appeared after heat treatment. The x-ray diffraction data for as-deposited Al-Mg films showed only pure Al and Mg peaks. However, Al-Mg alloy peaks such as $Al_3Mg_2$ and $Al_{12}Mg_{17}$ appeared after heat treatment of the films. It is believed that the formation of Al-Mg alloy phase affected the structure change of Al-Mg film. It was found that the corrosion resistance of Al-Mg film was increased after heat treatment.

Prediction of Rolling Texture for Mg Alloy AZ31B Sheet using Finite Element Polycrystal Model (유한요소 다결정 모델을 이용한 마그네슘 합금 AZ31B 판재의 압연 집합 조직 예측)

  • Won S. Y.;Kim Y. S.;Na K. H.;Takahashi Hiroshi
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.72-82
    • /
    • 2004
  • The deformation mechanism of hexagonal close-packed materials is quite complicate including slips and twins. A deformation mechanism, which accounts for both slip and twinning, was investigated for polycrystalline hop materials. The model was developed in a finite element polycrystal model formulated with initial strain method where the stiffness matrix in FEM is based on the elastic modulus. We predicted numerically the texture of Mg alloy(AZ31B) sheet by using FEM based on crystal plasticity theory. Also, we introduced the recrystallized texture employed the maximum energy release theory after rolling. From the numerical study, it was clarified that the shrink twin could not be the main mechanism for shortening of c-axis, because the lattice rotation due to twin rejects fur c-axis to become parallel to ND(normal direction of plate). It was showed that the deformation texture with the pyramidal slip gives the ring type pole figure having hole in the center.

  • PDF

Effect of Annealing Treatment on Cold Formability of AZ31 Sheets (AZ31 판재에서 소둔처리가 상온성형성에 미치는 영향)

  • Hwang, B.K.;Lee, Y.S.;Moon, Y.H.;Kim, D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.395-398
    • /
    • 2009
  • The purpose of this paper is to investigate the effect of annealing treatment on cold formability of magnesium alloy sheet AZ31. The AZ31 sheets with three different thickness (1.0t, 1.6t, 2.0t) were annealed at three different temperatures ($345^{\circ}C$, $400^{\circ}C$ and $450^{\circ}C$). The mechanical properties and microstructure evolution of the annealed AZ31 were examined as well as limit dome height (LDH) and compared with those of as received one. The cold formability was enhanced but the strength was deteriorated by the annealing treatment.

  • PDF

A Study on the Forming Limit Diagram Tests of Metal Sheets (금속 판재의 성형한계도 시험법에 관한 연구)

  • Jang, Uk-Kyeong;Jang, Yun-Ju;Kim, Hyung-Jong
    • Journal of Industrial Technology
    • /
    • v.30 no.A
    • /
    • pp.49-57
    • /
    • 2010
  • A forming limit diagram (FLD) defines the extent to which specific sheet material can be deformed by drawing, stretching or any combination of those two. To determine the forming limit curve (FLC) accurately, it is necessary to perform the tests under well-organized conditions. In this study, the influence of several geometric or process parameters such as the blank shape and dimensions, strain measuring equipments, test termination time, forming speed and lubricants on the FLC is investigated.

  • PDF

Characteristics of Electric Resistance Dual Spot Welding Process of AZ31 Magnesium Alloy Sheets (AZ31 마그네슘 합금 판재의 전기저항 이중 스폿용접 특성)

  • Sun, Xiao-Guang;Jin, In-Tai
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.1-11
    • /
    • 2022
  • In this study, an electric resistance dual-spot welding process using a copper electrode inserted in a heating electrode is suggested for the spot welding of AZ31 magnesium sheets. This spot-welding process involves two heating methods for welding at the interfacial zone between the magnesium sheets, one of which is the heating method by thermal conduction from the heating electrode heated by the welding current induced to the steel electrode, and the other heating method uses the electric resistance between the contacted surfaces of the two sheets by the welding current induced to the copper electrode. This welding process includes the welding variables, such as the current induced in the heating electrode and the copper electrode, and the outer diameters of the heating electrode. This is because the heat conducted from the heating electrode can be maintained at a higher temperature in the welding zone, which has a slow cooling effect on the nugget of the melted metal after the welding step. The pressure exerted during the pressing of the magnesium sheets by the heating electrode can be increased around the nugget zone at the spot-welding zone. Thus, it not only reduces the warping effect of the elastoplastic deformation of sheets, but also the corona bond can make it less prone to cracking at the welded zone, thereby reducing the number of nuggets expelled out of the corona bond. In conclusion, it was known that an electric resistance dual spot welding process using the copper electrode inserted in the heating electrode can improve the welding properties in the electric resistance spot welding process of AZ31 magnesium sheets.

Influence of Heat Treatment and Magnesium Content on Corrosion Resistance of Al-Mg Coated Steel Sheet (PVD법에 의해 제작한 Al-Mg 코팅 강판의 내식성에 미치는 Mg 함량 및 열처리의 영향)

  • Kang, Jae Wook;Park, Jun-Mu;Hwang, Sung-Hwa;Lee, Seung-Hyo;Moon, Kyung-Man;Lee, Myeong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.202-210
    • /
    • 2016
  • This study was intended to investigate the effect of the amount of magnesium addition and heat treatment in the Al-Mg coating film in order to improve corrosion resistance of aluminum coating. Al-Mg alloy films were deposited on cold rolled steel by physical vapor deposition sputtering method. Heat treatment was fulfilled in an nitrogen atmosphere at the temperature of $400^{\circ}C$ for 10 min. The morphology was observed by SEM, component and phase of the deposited films were investigated by using GDLS and XRD, respectively. The corrosion behaviors of Al-Mg films were estimated by exposing salt spray test at 5 wt.% NaCl solution and measuring polarization curves in deaerated 3 wt.% NaCl solution. With the increase of magnesium content, the morphology of the deposited Al-Mg films changed from columnar to featureless structure and particle size was became fine. The x-ray diffraction data for deposited Al-Mg films showed only pure Al peaks. However, Al-Mg alloy peaks such as $Al_3Mg_2$ and $Al_{12}Mg_{17}$ were formed after heat treatment. All the sputtered Al-Mg films obviously showed good corrosion resistance compared with aluminum and zinc films. And corrosion resistance of Al-Mg film was increased after heat treatment.