• Title/Summary/Keyword: Magnesium alloy sheet

Search Result 139, Processing Time 0.025 seconds

Forming Limit of AZ31B Magnesium Alloy Sheet in the Deep Drawing with Cross Shaped Die (십자 형상 금형의 디프 드로잉에서 AZ31B 마그네슘 합금판재의 성형 한계)

  • Hwang, S.H.;Choi, S.C.;Kim, H.Y.;Kim, H.J.;Hong, S.M.;Shin, Y.S.;Lee, G.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.374-377
    • /
    • 2008
  • Magnesium alloy sheets are usually formed at temperatures between $150^{\circ}C$and $300^{\circ}C$ because of their poor formability at room temperature. In the present study, the formability of AZ31B magnesium alloy sheets was investigated by the analytical and experimental approaches. First, tensile tests and the limit dome height test were carried out at elevated temperatures to get the mechanical properties and forming limit diagram, respectively. And then deep drawing of cross shaped die was tried to get the minimum corner radius and forming limit at specific temperature. Blank shape, punch velocity, minimum corner radius, fillet size, etc, were determined by finite element analysis physical try-outs. Especially, optimum punch and die temperature were suggested through the temperature-deformation analysis using Pam-stamp.

  • PDF

A Study of Process Parameters Optimization Using Genetic Algorithm for Nd:YAG Laser Welding of AA5182 Aluminum Alloy Sheet (AA5182 알루미늄 판재의 Nd:YAG 레이저 용접에서 유전 알고리즘을 이용한 공정변수 최적화에 대한 연구)

  • Park, Young-Whan;Rhee, Se-Hun;Park, Hyun-Sung
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1322-1327
    • /
    • 2007
  • Many automotive companies have tried to apply the aluminum alloy sheet to car body because reducing the car weight can improve the fuel efficiency of vehicle. In order to do that, sheet materials require of weldablity, formability, productivity and so on. Aluminum alloy was not easy to join these metals due to its material properties. Thus, the laser is good heat source for aluminum alloy welding because of its high heat intensity. However, the welding quality was not good by porosity, underfill, and magnesium loss in welded metal for AA5182 aluminum alloy. In this study, Nd:YAG laser welding of AA 5182 with filler wire AA 5356 was carried out to overcome this problem. The weldability of AA5182 laser welding with AA5356 filler wire was investigated in terms of tensile strength and Erichsen ratio. For full penetration, mechanical properties were improved by filler wire. In order to optimize the process parameters, model to estimate tensile strength by artificial neural network was developed and fitness function was defined in consideration of weldability and productivity. Genetic algorithm was used to search the optimal point of laser power, welding speed, and wire feed rate.

  • PDF

Friction Behavior of DLC Coating Slid Against AZ31 Magnesium Alloy at Various Temperatures (마그네슘 합금에 대한 DLC 코팅의 온도에 따른 마찰기구 해석)

  • Gwon, H.;Kim, M. G.;Hur, H. L.;Kim, Y.-S.
    • Transactions of Materials Processing
    • /
    • v.24 no.6
    • /
    • pp.405-410
    • /
    • 2015
  • Sheet-forming of Mg alloys is conducted at elevated temperatures (250℃) due to the low formability at room temperature. The high-temperature process often gives rise to surface damage on the alloy (i.e. galling.) In the current study, the frictional characteristics of DLC coating slid against an AZ31 Mg alloy at various temperatures were investigated. The coating has been used widely for low-friction processes. Dry-sliding friction and galling characteristics of an AZ31 Mg alloy (disk), which slid against uncoated and a DLC-coated STD-61 steel (pin), were investigated using a reciprocating-sliding tribometer at room temperature and 250℃. To represent the real sliding phenomena during a sheet metal forming process, single-stroke tests were used (10mm stroke length) rather than a reciprocating long sliding-distance test. The DLC coating suppressed adhesion between the alloy and the tool steel at room temperature, and exhibited a low friction coefficient. However, during sliding at 250℃, severe adhesion occurred between the two surfaces, which resulted in a high friction coefficient and galling.

Effects of Minor Alloying Elements on the Mechanical Properties and Formability of Mg-3%Zn-0.5%Sn Base Sheet Alloys (Mg-3%Zn-0.5%Sn계 판재합금의 기계적 성질과 성형성에 미치는 미량합금원소의 영향)

  • Kim, Jeong-Min;Park, Joon-Sik;Kim, Ha-Young;Kim, Ki-Tae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.2
    • /
    • pp.87-93
    • /
    • 2008
  • A variety of minor alloying elements such as Zr, Sr, Y, and Gd were added to Mg-3%Zn-0.5%Sn base alloy to form various fine precipitates and their effects on the microstructure, tensile properties, and sheet metal formability were investigated. Various very fine precipitates along with fine second phases were observed by the additions. It was found that Zr or Gd additive has a role to suppress the grain coarsening of alloy sheets during the hot working process. The Zr-added alloy showed the highest tensile elongation at $250^{\circ}C$ whereas the Gd-added alloy exhibited the best sheet metal forming characteristics in terms of CCV (conical cup value) and spring-back tendency.

Experiments for Material Properties of Magnesium Metal Sheet at Elevated Temperatures (마그네슘 판재의 고온 물성치 실험)

  • Choi, E.K.;Lee, S.W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.378-381
    • /
    • 2009
  • In this study, the repetitive loading-unloading tensile tests with AZ31B magnesium sheet metal have been conducted under various elevated temperatures to check out how the Young's moduli of the sheets evolve during the plastic deformation. The loading-unloading tests have been carried out at every 1% of strain increment. With the tested results, some damage parameters of magnesium sheets based on the Lemaitre's continuum damage theory could be calculated at room temperature, $100^{\circ}C$, $150^{\circ}C$, $200^{\circ}C$ and $250^{\circ}C$. It has been shown that the critical damage parameters obtained in all temperature conditions are within the range of 0.12 to 0.18.

  • PDF

Practical Method for FLD of Mg Alloy Sheet using FEM (유한요소해석을 이용한 마그네슘 합금 판재 성형한계도의 실용적 작성 방법)

  • Kim, K.T.;Lee, H.W.;Kim, S.H.;Song, J.H.;Lee, G.A.;Choi, S.;Lee, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.183-185
    • /
    • 2008
  • Forming Limit Diagram(FLD) is a representative tool for evaluating formability of sheet metals. This paper presents a methodology to determine the FLD using Finite Element Method. For predicting the forming limits numerically. Previous methods such as using the thickness strain or the ductile fracture criterion are limited at plane strain domain. These results suggest that behavior of the void growth in sheet metals is different from real one. In contrast to previous methods, a more exact model which takes void growth into account is used. This result agrees with the experimental result qualitatively.

  • PDF

Experimental and Analytical Researches on Mechanical Properties Related to Formability of AZ31B Alloy Sheet (AZ31B 합금판재 성형관련 기초물성 실험 및 해석 연구)

  • Kim, S.H.;Park, K.D.;Jang, J.H.;Kim, K.T.;Lee, H.W.;Lee, G.A.;Kim, K.P.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.7
    • /
    • pp.466-472
    • /
    • 2008
  • In this paper, tension tests and formability tests are performed to construct a database related to mechanical properties and the formability of the AZ31B Mg alloy sheet. A forming test with a hemi-spherical punch is conducted at varying temperatures to establish a forming limit diagram. In order to verify the applicability of the analysis using the conventional flow hardening model, a finite element analysis is performed on the hemi-spherical punch forming process and the results are compared with experimental ones. The study investigates problems involving a computational analysis that does not consider flow softening of the magnesium alloy at elevated temperatures.

Experimental and Analytical Researches on Mechanical Properties Related to Formability of AZ31B Alloy Sheet (AZ31B 합금판재 성형관련 기초물성 시험 및 해석 연구)

  • Kim, S.H.;Park, K.D.;Jang, J.H.;Kim, K.T.;Lee, H.W.;Lee, G.A.;Choi, S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.366-369
    • /
    • 2008
  • In this paper, tension tests and formability tests are performed to construct a database related to mechanical properties and the formability of the AZ31B Mg alloy sheet. A forming test with a hemi-spherical punch is conducted at varying temperatures to establish a forming limit diagram. In order to verify the applicability of the analysis using the conventional flow hardening model, a finite element analysis is performed on the hemi-spherical punch forming process and the results are compared with experimental ones. The study investigates problems involving a computational analysis that does not consider flow softening of the magnesium alloy at elevated temperatures.

  • PDF