• 제목/요약/키워드: Magnesium Corrosion

검색결과 176건 처리시간 0.023초

Corrosion Behavior and Inhibition Studies of AZ31B Magnesium Alloy With and Without Cl- in the Alkaline Electrolytes in Addition with Various Inhibitor Additives

  • Shin, Yoonji;Cho, Kyehyun
    • Corrosion Science and Technology
    • /
    • 제18권6호
    • /
    • pp.243-252
    • /
    • 2019
  • The pitting corrosion and inhibition studies of AZ31B magnesium alloy were investigated in the alkaline solution (pH12) with chloride and inhibitors. The corrosion behavior of passive film with/without Cl- in the alkaline electrolyte were conducted by polarization curve and immersion tests in the presence of various additives (inhibitors) to clarify the inhibition efficiency of pitting corrosion at higher potential region. Critical concentration of pitting corrosion for Mg alloy was evaluated with 0.005 M NaCl in 0.01 M NaOH on the anodic polarization behavior. Critical pitting of AZ31B Mg alloy in 0.01 M NaOH is a function of chlorides; Epit = - 1.36 - 0.2 log [Cl-]. When the Sodium Benzoate (SB) was only used as an inhibitor, a few metastable pits developed on the Mg surface by an immersion test despite no pitting corrosion on the polarization curve meaning that adsorption of SB on the surface is insufficient protection from pitting corrosion in the presence of chloride. The role of SB and Sodium Dodecylbenzenesulfonate (SDBS) inhibitors for the Mg alloy surface in the presence of chloride was suppressed from pitting corrosion to co-adsorb on the Mg alloy surface with strong formation of passive film preventing pitting corrosion.

Evaluation of Metals (Al, Fe, Zn) in Alternative Fuels by Electrochemical Impedance Spectroscopy in Two Electrode Cell

  • Song, Yon-Kyun;Lim, Geun-Woong;Kim, Hee-San
    • Corrosion Science and Technology
    • /
    • 제9권2호
    • /
    • pp.92-97
    • /
    • 2010
  • Many kinds of alternative fuels such as biodiesel, ethanol, methanol, and natural gas have been developed in order to overcome the limited deposits in fossil fuels. In some cases, the alternative fuels have been reported to cause degrade materials. The corrosion rates of metals were measured by immersion test, a kind of time consuming test because low conductivity of these fuels was not allowed to employ electrochemical tests. With twin two-electrode cell newly designed for the study, however, electrochemical impedance spectroscopy (EIS) test was successfully applied to evaluation of the corrosion resistance ($R_p$) of zinc, iron, aluminum, and its alloys in an oxidized biodiesel and gasoline/ethanol solutions and the corrosion resistance from EIS was compared with the corrosion rate from immersion test. In biodiesel, $R_p$ increased in the order of zinc, iron, and aluminum, which agreed with the corrosion resistance measured from immersion test. In addition, on aluminum showing the best corrosion resistance ($R_p$), the effect of magnesium as an alloying element was evaluated in gasoline/ethanol solutions as well as the oxidized biodiesel. $R_p$ increased with addition of magnesium in gasoline/ethanol solutions containing chloride and the oxidized biodiesel. In the mean while, in gasoline/ethanol solutions containing formic acid, Al-Mg alloy added 1% magnesium had the highest $R_p$ and the further addition of magnesium decreased $R_p$. It can be explained with the fact that the addition of more than 1% magnesium increases the passive current density of Al-Mg alloys.

마그네슘 합금의 방청을 위한 하이브리드 졸-겔 코팅제의 개발 (Development of Hybrid Sol-Gel Coating to Prevent Corrosion of Magnesium Alloys)

  • 이동욱;김영훈;문명준
    • Corrosion Science and Technology
    • /
    • 제17권1호
    • /
    • pp.30-36
    • /
    • 2018
  • The high rate of corrosion of magnesium alloys makes it limited for industrial applications. Therefore, surface treatment is required to enhance their corrosion resistance. In our study, a chemical conversion coating for protecting the corrosion of the magnesium alloy, AZ31B, was prepared by using a phosphate-permanganate solution. The chemical conversion coating had a limited protection ability due to defects arising from cracks and pores in the coating layer. The sol-gel coating was prepared by using trimethoxymethylsilane (MTMS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) as precursors, and aluminum acetyl acetonate as a ring opening agent. The corrosion protection properties of sol-gel and conversion coatings in 0.35wt% NaCl solution were measured by the electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization test. The EIS results indicated that the resistance of the chemical conversion coating with the sol-gel coating was significantly improved through the sol-gel sealed phosphate-permanganate conversion coating. The results of the potentiodynamic polarization test revealed that the sol-gel coating decreased the corrosion current density ($I_{corr}$). The SEM image showed that the sol-gel coating sealed conversion coating and improved corrosion protection.

Influence of Annealing Temperatures on Corrosion Resistance of Magnesium Thin Film-Coated Electrogalvanized Steel

  • Lee, Myeong-Hoon;Lee, Seung-Hyo;Jeong, Jae-In;Kwak, Young-Jin;Kim, Tae-Yeob;Kim, Yeon-Won
    • 한국표면공학회지
    • /
    • 제46권3호
    • /
    • pp.116-119
    • /
    • 2013
  • To improve the corrosion resistance of an electrogalvanized steel sheet, we deposited magnesium film on it using a vacuum evaporation method and annealed the films at $250-330^{\circ}C$. The zinc-magnesium alloy is consequently formed by diffusion of magnesium into the zinc coating. From the anodic polarization test in 3% NaCl solution, the films annealed at $270-310^{\circ}C$ showed better corrosion resistance than others. In X-ray diffraction analysis, $ZnMg_2$ was detected through out the temperature range, whereas $Mg_2Zn_{11}$ and $FeZn_{13}$ were detected only in the film annealed at $310^{\circ}C$. The depth composition profile showed that the compositions of Mg at $270-290^{\circ}C$ are evenly and deeply distributed in the film surface layer. These results demonstrate that $270-290^{\circ}C$ is a proper temperature range to produce a layer of $MgZn_2$ intermetallic compound to act as a homogeneous passive layer.

건식플라즈마 표면처리법에 의한 마그네슘 합금의 내식특성 향상 (A Study on the Enhancement of Corrosion Resistance of Magnesium Alloy by Dry Plasma Process)

  • 윤용섭
    • 해양환경안전학회지
    • /
    • 제17권2호
    • /
    • pp.155-160
    • /
    • 2011
  • 현재 지구온난화 등의 환경문제로 인해 각종 산업분야에서 정량화에 대한 요구가 증대되어 해양산업에도 그 수요가 증가하고 있는 실정이다. 따라서 본 연구에서는 차세대 경량화 재료인 마그네슘이 활용되기 위해서 반드시 극복해야할 가장 중요한 특성인 내식특성에 대하여 고찰하고, 그 내식특성 향상을 위한 마그네슘 박막의 Morphology나 결정배향성의 영향을 해명하고자 하였다. 실험결과로부터 제작한 Mg 박막의 전기화학적 내식특성은 Ar 가스압이 높은 조건에서 제작한 막일수록 내식특성이 우수하였다. 이러한 경향은 표면 및 단면의 Morphology와 결정배향성과의 상관관계를 통하여 설명 가능하였다.

내식성 향상을 위한 마그네슘합금의 ZrO2 적용 레이저 표면 처리 (Laser Surface Treatment of Magnesium Alloy using ZrO2 for Corrosion Resistance)

  • 윤상우;강동찬;김주한
    • 한국기계가공학회지
    • /
    • 제15권4호
    • /
    • pp.93-100
    • /
    • 2016
  • The laser surface treatment of magnesium alloy was studied. $ZrO_2$ was used as sintering ceramics, and its corrosion resistance was verified. Appropriate laser parameters were proposed for homogeneous solidification of the sintered layer. The chemical compositions of the sintered layer were analyzed with laser-induced breakdown spectroscopy. $Na_2SO_4$ was used for a corrosion test, and the resistance of the sintered sample was confirmed. The microstructures of the sintered parts were also examined. The solidified grains on the top sintered surface were observed; however, reasonable fusion was obtained at the interface between the baseline and the ceramics. Laser surface treatment using $ZrO_2$ on magnesium alloy showed an improvement in corrosion resistance.

플라즈마 전해산화 처리된 마그네슘 합금의 내부식성에 미치는 코팅층 내 지르코니아 입자 영향 (Influence of ZrO2 Particulates on Corrosion Resistance of Magnesium Alloy Coated by Plasma Electrolytic Oxidation)

  • 남궁승;고영건;신기룡;신동혁
    • 대한금속재료학회지
    • /
    • 제48권9호
    • /
    • pp.813-818
    • /
    • 2010
  • In current automobile and electronic industries, the use of magnesium alloys where both energy and weight saving are attainable is increasing. Despite their light weight, there has been an inherent drawback arising from the surface vulnerable to be oxidized with ease, specifically under corrosive environments. To protect magnesium alloy from corrosion, the present work deals with the electrochemical response of the oxide layer on magnesium alloy specimen prepared by plasma electrolytic oxidation (PEO) method in an electrolyte with zirconia powder. Surface observation using scanning electron microscopy evidences that a number of zirconia particles are effectively incorporated into oxide layer. From the results of potentio-dynamic tests in 3.5 wt% NaCl solution, the PEO-treated sample containing zirconia particles shows better corrosion properties than that without zirconia, which is the result of zirconia incorporation into the coating layer. Corrosion resistance is also measured by utilizing salt spray tests for 120 hrs.

An Investigation of Pulse Anodization Duty Ratio and Sealing Treatment on the Corrosion Behavior of the Anodic Coating Layer in Magnesium AZ31B

  • Setiawan, Asep Ridwan;Rachman, Muhammad Dani
    • Corrosion Science and Technology
    • /
    • 제20권2호
    • /
    • pp.45-51
    • /
    • 2021
  • In this work, we describe the effect of pulse anodizing duty ratio on the corrosion resistance of anodic films in magnesium AZ31B. The process involves the application of square pulse potential for a constant period with a duty ratio varying from 40, 60 and 80%. In several samples, a sealing treatment for 30 minutes was conducted after anodization in order to seal the pores available in the anodic layer. After anodizing, the surface morphology of the anodic layer was examined using a scanning electron microscope (SEM Hitachi SU3500). The corrosion characteristics of the sample were evaluated through an open circuit potential (OCP) and potentiodynamic polarization test using potentiogalvanostat. SEM observation shows that the increase of anodization duty ratio (α) results in a more uniform anodic layer, with fewer pores and cracks. The increase of duty ratio (α) decreases the OCP value from approximately -1.475 to about -1.6 Volt, and significantly improves the corrosion resistance of the anodic coating by 68%. The combination of anodization and sealing treatment produces an anodic coating with a very low corrosion rate of 4.4 mpy.

Effect of Solution-treated on Electrochemical Properties of AZ91 Magnesium Alloy Anode

  • Zhiquan, Huang;Yanjie, Pei;Renyao, Huang;Xiangyu, Gao;Jinchao, Zou;Lianyun, Jiang
    • Journal of Electrochemical Science and Technology
    • /
    • 제13권4호
    • /
    • pp.486-496
    • /
    • 2022
  • The effect of solution-treated on the self-corrosion performance and discharge performance of AZ91 magnesium alloy as anode material was analyzed by microscopic characterization, immersion tests, electrochemical measurements, and discharge performance tests. The study shows that the β-phase in the AZ91 magnesium alloy gradually dissolved in the matrix with the increase of the solution temperature, and the electrochemical activity of the magnesium alloy anode was significantly improved. Through the comparison of three different solution-treated processes, it is found that the AZ91 magnesium alloy has the most vigorous activity and better discharge performance after solution-treated of 415℃+12 h. In addition, the proportion and distribution of β-phase AZ91 magnesium alloy have a direct impact on its discharge performance as an anode material.

용융합금도금 강판 적용 노측용 방호울타리 충돌 안전성 평가 해석 사례 연구 (A Simulation Case Study on Impact Safety Assessment of Roadside Barriers Built with High Anti-corrosion Hot-dip Alloy-coated Steel)

  • 노명현
    • 한국안전학회지
    • /
    • 제31권2호
    • /
    • pp.83-89
    • /
    • 2016
  • As the world's industrial development quickens, the highways and regional expressways have been expanding to serve the logistics and transportation needs of people. The burgeoning road construction has led to a growing interest in roadside installations. These must have reliable performance over long periods, reduced maintenance and high durability. Steel roadside barriers are prone to corrosion and other compromises to their functionality. Therefore, using high anti-corrosion steel material is now seen as a viable solution to this problem. Thus, the objective of this paper is to expand the scope of applications for high anti-corrosion steel material for roadside barriers. This paper assesses the impact safety such as structural performance, occupant protection performance and post-impact vehicular response performance by a simulation review on roadside barriers built with high strength anti-corrosion steel materials named as hot-dip zinc-aluminium-magnesium alloy-coated steel. The simulation test results for the roadside barriers built with high strength anti-corrosion steels with reduced sectional thickness meet the safety evaluation criteria, hence the proposed roadside barrier made by high strength and high anti-corrosion hot-dip zinc-aluminium-magnesium alloy-coated steel will be a good solution to serve safe impact performance as well as save maintenance cost.