• 제목/요약/키워드: Magnesium AZ31B

검색결과 98건 처리시간 0.025초

The Characteristic Study of Plasma Electrolytic Oxidation in AZ31B Magnesium Alloy

  • Yu, Jae-Yong;Choi, Soon-Don;Yu, Jae-In;Yun, Jae-Gon;Ko, Hoon;Jung, Yeon-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권4호
    • /
    • pp.1746-1751
    • /
    • 2015
  • In this study low voltage Plasma Electrolytic Oxidation (PEO) was utilized to eliminate high voltage PEO drawbacks such as high cost, dimensional deformation and porosity. Low voltage PEO produces a thin coating which causes low corrosion resistance. In order to solve such problem, 0.1~0.6M pyrophosphates were added in a bath containing 1.4M NaOH, and 0.35M Na2SiO3. 70 V PEO was conducted at 25℃ for 3 minutes. Chemical composition, morphology and corrosion resistance of the anodized coating were analyzed. The anodized film was composed of MgO, Mg2SiO4, and Mg2O7P2. The morphology of film showed appropriately dense structure and low porosity in the anodized layers. It is found that low voltage Plasma Electrolytic Oxidation in cooperation with phosphating treatment can provide a good corrosion protection for the AZ31B magnesium alloy.

과망간산칼륨 용액에서 화학적으로 형성된 AZ31B 마그네슘 합금의 피막 특성평가 (Characteristics of Films Formed on AZ31B Magnesium Alloy by Chemical Oxidation Process in Potassium Permanganate Solution)

  • 김민정;김형찬;윤석영;정우창
    • 한국표면공학회지
    • /
    • 제44권2호
    • /
    • pp.44-49
    • /
    • 2011
  • The films formed on AZ31B magnesium alloy were prepared from alkaline solution composed of potassium permanganate and sodium hydroxide. The immersion tests were carried out at the different concentration of sodium hydroxide and pre-treatment method in 5 minute. The morphology and the phase composition of the film were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The corrosion behavior of the film in 5.0% NaCl solution was evaluated using potentiodyanmic polarization. Open circuit potential in developing film was examined with time. The thin and transparent film was mainly composed of MgO and $Mg(OH)_2$. The film with the best corrosion resistance was obtained at $70^{\circ}C$ bath temperature, 1.6 M concentration of sodium hydroxide and chemical pre-treatment.

An Investigation of Pulse Anodization Duty Ratio and Sealing Treatment on the Corrosion Behavior of the Anodic Coating Layer in Magnesium AZ31B

  • Setiawan, Asep Ridwan;Rachman, Muhammad Dani
    • Corrosion Science and Technology
    • /
    • 제20권2호
    • /
    • pp.45-51
    • /
    • 2021
  • In this work, we describe the effect of pulse anodizing duty ratio on the corrosion resistance of anodic films in magnesium AZ31B. The process involves the application of square pulse potential for a constant period with a duty ratio varying from 40, 60 and 80%. In several samples, a sealing treatment for 30 minutes was conducted after anodization in order to seal the pores available in the anodic layer. After anodizing, the surface morphology of the anodic layer was examined using a scanning electron microscope (SEM Hitachi SU3500). The corrosion characteristics of the sample were evaluated through an open circuit potential (OCP) and potentiodynamic polarization test using potentiogalvanostat. SEM observation shows that the increase of anodization duty ratio (α) results in a more uniform anodic layer, with fewer pores and cracks. The increase of duty ratio (α) decreases the OCP value from approximately -1.475 to about -1.6 Volt, and significantly improves the corrosion resistance of the anodic coating by 68%. The combination of anodization and sealing treatment produces an anodic coating with a very low corrosion rate of 4.4 mpy.

Nd:YAG 레이저를 이용한 마그네슘 합금의 겹치기 용접 (Lap Welding of Magnesium Alloy using Nd:YAG Laser)

  • 김종도;이정한;서정
    • 한국레이저가공학회지
    • /
    • 제14권3호
    • /
    • pp.12-16
    • /
    • 2011
  • In automotive industry, because of the consideration of fuel economy, lightweight alloys have been adopted and are expected to be extensively used in the future. Magnesium alloys are among the promising materials, due to their lightweight and good mechanical properties. This study is related to the laser weldability of AZ31B magnesium alloy, an all-purpose wrought alloy with good strength and ductility. A 4kW Nd:YAG laser was used to join AZ31B sheet, and the effects of welding parameter on the quality of lap-welded joints were investigated. As a result of this study, the optimal condition was obtained, and the effect of gap distance was also revealed on the porosity control.

  • PDF

AZ31B 마그네슘 합금의 Cup-Rod 복합압출 성형특성 연구 (Forming Characteristics of Magnesium Alloy in Cup-Rod Combined Extrusion Process)

  • 윤덕재;김응주;조종두
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.70-73
    • /
    • 2007
  • The forming characteristics of cup-rod combined extrusion process were investigated with process parameter change. Simultaneous forward rod extrusion and backward cup extrusion was conducted with magnesium alloy, AZ31B. Process parameters such as forward extrusion ratio, backward extrusion ratio, and working temperature were controlled in a specific region and the effects of the parameter change were examined. Surface crack was developed in a certain state of the process parameters combination. The crack-free forming limit of the alloy in the combined process was disclosed by the parameter study. The microstructures of the initial and extruded workpieces were observed.

  • PDF

유한요소법을 이용한 AZ31 마그네슘합금의 직/간접 압출 전산모사 (The simulation of direct/indirect extrusion of AZ3l magnesium alloy by FEM)

  • 이형욱;윤덕재;박성수;유봉선;최시훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 추계학술대회 논문집
    • /
    • pp.142-145
    • /
    • 2008
  • A finite element analysis has been conducted to simulate direct/indirect extrusion process for AZ31 Mg alloy at various ram and die speeds. Uniaxial compression test on AZ31 Mg alloy was carried out at various strain rates and temperatures and the result was used as input data fur finite element analysis. It was found that ram speed affects the distribution of dead zone area during direct extrusion. The inhomogeneous temperature and strain distributions through the thickness direction can be simulated under the various extrusion process conditions.

  • PDF

AZ31B 합금판재 성형관련 기초물성 실험 및 해석 연구 (Experimental and Analytical Researches on Mechanical Properties Related to Formability of AZ31B Alloy Sheet)

  • 김세호;박기동;장정호;김경태;이형욱;이근안;김기풍;이용신
    • 소성∙가공
    • /
    • 제17권7호
    • /
    • pp.466-472
    • /
    • 2008
  • In this paper, tension tests and formability tests are performed to construct a database related to mechanical properties and the formability of the AZ31B Mg alloy sheet. A forming test with a hemi-spherical punch is conducted at varying temperatures to establish a forming limit diagram. In order to verify the applicability of the analysis using the conventional flow hardening model, a finite element analysis is performed on the hemi-spherical punch forming process and the results are compared with experimental ones. The study investigates problems involving a computational analysis that does not consider flow softening of the magnesium alloy at elevated temperatures.

AZ31B 합금판재 성형관련 기초물성 시험 및 해석 연구 (Experimental and Analytical Researches on Mechanical Properties Related to Formability of AZ31B Alloy Sheet)

  • 김세호;박기동;장정호;김경태;이형욱;이근안;최석우
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.366-369
    • /
    • 2008
  • In this paper, tension tests and formability tests are performed to construct a database related to mechanical properties and the formability of the AZ31B Mg alloy sheet. A forming test with a hemi-spherical punch is conducted at varying temperatures to establish a forming limit diagram. In order to verify the applicability of the analysis using the conventional flow hardening model, a finite element analysis is performed on the hemi-spherical punch forming process and the results are compared with experimental ones. The study investigates problems involving a computational analysis that does not consider flow softening of the magnesium alloy at elevated temperatures.

  • PDF

FSW를 이용한 AZ31B Mg합금의 접합성 평가 (Evaluation of Joint Properties of Friction Stir Welded AZ31B Mg Alloy)

  • 노중석;김흥주;장웅성;방국수
    • Journal of Welding and Joining
    • /
    • 제22권3호
    • /
    • pp.56-61
    • /
    • 2004
  • Friction stir weldability of AZ31B Mg alloy was studied using microstructural observation and mechanical tests. Defect free joints was obtained under the condition of 2000rpm-100mm/min. In TMAZ, a lot of twin deformation were observed due to the mechanical effect of the FSW tool and thus relatively high hardness was obtained. In SZ, the twin deformation was disappeared by recovery and the hardness decreased because the. grain structure was coarsened by dynamic recrystallization and grain growth. The Al-Mn precipitates were observed throughout the joint regions. On the other hand, $$\beta$-Mg_{17}Al_{12}$ intermetallic compounds were not observed in either of the zone. The joint efficiency was about 80% and the impact value of the joint was almost equal to that of base metal.

전신 및 주조된 Mg합금의 FSW 접합성 평가 (Evaluation of FSW Weldability of Wrought and Casting Mg Alloys)

  • 노중석;김흥주;장웅성;방국수
    • Journal of Welding and Joining
    • /
    • 제22권5호
    • /
    • pp.53-57
    • /
    • 2004
  • Friction stir weldability of AZ31B-H24, AZ61A-F and AZ91C-F Mg alloys were studied using microstructural observation and mechanical tests. The microstructure of stir zone(SZ) was coarse in AZ31B-H24 alloy whereas it was very fine both in AZ61A-F and AZ91C-F alloys. The hardness of SZ was remarkably increased by very fine recrystallized grains both in AZ61A-F and AZ91C-F alloys. On the other hand, the hardness of SZ was decreased in AZ31B-H24 due to the coarse microstructure. In SZ, AZ91C-F alloy showed very high hardness values because of dispersion hardening of $Mg_{17}$Al$_{12}$($\beta$ phase) and Al solid solution hardening. Because of more $Mg_{ 17}Al_{12}($\beta$ phase)$ intermetallic compounds, Mg alloy with high Al content showed poor mechanical properties.s.