• Title/Summary/Keyword: Magnesium AZ31B

Search Result 98, Processing Time 0.018 seconds

Numerical Study of the Butting Process for a AZ31B Magnesium Alloy Tube (마그네슘 합금(AZ31B) 버티드 튜브 성형 공정 해석)

  • Han, S.S.;Lee, M.Y.
    • Transactions of Materials Processing
    • /
    • v.22 no.8
    • /
    • pp.486-491
    • /
    • 2013
  • A numerical investigation of the butting process for an AZ31B magnesium alloy tube at elevated temperatures was conducted to develop a double-butted magnesium alloy tube. As a result of the current study, it was found that the amount of doming of the tube end, prior ironing-extrusion to obtain high wall thickness reduction are important factors for the butting process of magnesium alloy tubes. There is also a limitation of the thickness profile of butted tube due to buckling of tube wall during the stripping stage.

Dependency on the Forming speed at the warm forming of magnesium sheet (마그네슘 판재 온간 딮드로잉성에서의 속도의존성)

  • Park, H.Y.;Lee, H.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.246-249
    • /
    • 2007
  • This study is concerned with deep drawability of magnesium sheets(AZ31B) at the warm conditions. Especially the dependency on forming speed has been investigated at the temperature of $200^{\circ}C$ and $300^{\circ}C$. Deep drawing test has been carried out at the temperature of $200^{\circ}C$ and $300^{\circ}C$. The die and blank holder are kept at test temperature by local heating and the punch is kept at room temperature by cooling technique. The magnesium sheets called AZ31B with the thickness of 0.5mm have been applied to deep drawing of circular cup. The drawability has been estimated at the conditions of forming speed (0.1, 1, 10 mm/sec). The results of deep drawing experiments show that the drawability is better at $300^{\circ}C$. Also the deep drawability is improved at the low speed(1mm/sec).

  • PDF

Process Development for Automotive Hybrid Hood using Magnesium Alloy AZ31B Sheet (마그네슘 합금 AZ31B 판재를 이용한 자동차 하이브리드 후드 개발 프로세스)

  • Jang, D.H.
    • Transactions of Materials Processing
    • /
    • v.20 no.2
    • /
    • pp.160-166
    • /
    • 2011
  • Weight reduction while maintaining functional requirements is one of the major goals in the automotive industry. The use of lightweight magnesium alloys offers great potential for reducing weight because of the low density of these alloys. However, the formability and the surface quality of the final magnesium alloy product for auto-body structures are not acceptable without a careful optimization of the design parameters. In order to overcome some of the main formability limitations in the stamping of magnesium alloys, a new approach, the so-called "hybrid technology", has been recently proposed for body-in-white structural components. Within this approach, necessary level of mechanical joining can be obtained through the use of lightweight material-steel adhesion promoters. This paper presents the development process of an automotive hybrid hood assembly using magnesium alloy sheets. In the first set of material pairs, the selected materials are magnesium alloy AZ31B alloy and steel(SGCEN) as inner and outer panels, respectively. In order to optimize the design of the inner panel, the stamping process was analyzed with the finite element method (FEM). Laser welding by CW Nd:YAG were used to join the magnesium alloy sheets. Based on the simulation results and mechanical test results of the joints, the determination of die design variables and their influence on formability were discussed. Furthermore, a prototype based on the proposed design was manufactured and the static stiffness test was carried out. The results demonstrate the feasibility of the proposed hybrid hood with a weight reduction of 25.7%.

Mechanical Properties and Corrosion Resistance of Plasma Electrolytic Oxidation Coatings on AZ31 Magnesium Alloy

  • Park, Jae Seon;Jung, Hwa Chul;Shin, Kwang Seon
    • Corrosion Science and Technology
    • /
    • v.5 no.2
    • /
    • pp.77-83
    • /
    • 2006
  • The plasma electrolytic oxidation (PEO) process is a relatively new surface treatment technique that produces a chemically stable and environment-friendly electrolytic coating that can be applied to all types of magnesium alloys. In this study, the characteristics of oxide film were examined after coating the extruded AZ31 alloy through the PEO process. Hard ceramic coatings were obtained on the AZ31 alloy by changing the coating time from 10min to 60min. The morphologies of the surface and the cross-section of the PEO coatings were examined by scanning electron microscopy and optical microscopy, and the thickness of the coating was measured. The X-ray diffraction pattern of the coating shows that the coated layer consists mainly of the MgO and $Mg_2SiO_4$ phases after the oxidation reaction. The hardness of the coated AZ31 alloy increased with increasing coating time. In addition, the corrosion rates of the coated and uncoated AZ31 alloys were examined by salt spray tests according to ASTM B 117 and the results show that the corrosion resistance of the coated AZ31 alloy was superior to that of the un-coated AZ31 alloy.

Measurement of Springback of AZ31B Mg Alloy Sheet in OSU Draw/bend Test (AZ31B 마그네슘 합금 판재의 OSU 드로우벤드 시험과 스프링 백 측정)

  • Choi, J.G.;Choi, S.C.;Lee, M.G.;Kim, H.Y.
    • Transactions of Materials Processing
    • /
    • v.16 no.6
    • /
    • pp.447-451
    • /
    • 2007
  • The springback characteristics of AZ31B magnesium alloy sheet was investigated in OSU draw/bend test Springback is the elastically-driven change of shape of a part after forming and it should be estimated and controlled to manufacture more precise products in sheet forming. Magnesium alloy sheets have unique mechanical properties such as high in-plane anisotropy/asymmetry of yield stress and hardening response. So, there will be a difference in the prediction of springback with symmetric mechanical properties for magnesium alloy sheets. In this work, the Strip draw/bend tests were conducted with various conditions - die radius, sheet thickness and controlled tensile force and the tendency of springback angle was observed from the tests.

Experimental and Analytical Evaluation of Forming Characteristics for AZ31B Magnesium Alloy Sheet (AZ31B 마그네슘 합금판재의 성형특성 평가를 위한 실험적·해석적 연구)

  • Lee, M.G.;Kim, H.J.
    • Transactions of Materials Processing
    • /
    • v.20 no.2
    • /
    • pp.146-153
    • /
    • 2011
  • This study aimed at providing an experimental database for the mechanical properties of AZ31B magnesium alloy sheet such as stress-strain curve, yield stress, R-value and forming limit diagram(FLD) at various strain-rates and temperatures. Tensile tests were carried out on specimens having the orientations of $0^{\circ}$, $45^{\circ}$ and $90^{\circ}$ to the rolling direction with different crosshead speeds in the range between 0.008 and 8 mm/s at temperature from 25(room temperature) to $300^{\circ}C$. The influence of the specimen gage length on the tensile properties was investigated. FLD tests were performed at punch speed of 0.1 and 1.0 mm/s in the same temperature range as that of the tensile tests. Swift cup tests were conducted to verify the usefulness of the material database and the reliability of the finite element analysis(FEA). The effects of strain-rate as well as temperature were taken into account in these simulations. It was shown that the FLD-based failure was reasonably well predicted by the thermal-deformation coupled analysis for this rate-sensitive material.

Tool Temperatures to Maximize the Warm Deep-drawability of AZ31B Sheets (AZ31B 판재의 온간 디프드로잉 성형성 극대화를 위한 금형 온도)

  • Choi, S.C.;Kim, H.J.;Kim, H.Y.;Hong, S.M.;Shin, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.66-70
    • /
    • 2008
  • In this study, the formability of AZ31B magnesium alloy sheets was investigated by the analytical and experimental approaches. Tensile tests and limit dome height tests were rallied out at several temperatures between $25^{\circ}C$ and $300^{\circ}C$ to obtain the mechanical properties and forming limit diagram (FLD). The FLD-based criterion considering the strain-path and the blank temperature was used to predict the forming limit in a deep-drawing process of cross-shaped cup by finite element analysis. This criterion proved to be very useful in determining the optimal process conditions such as blank shape, punch velocity, minimum comer radius, fillet size, and so on, through the comparison between FEA and experimental data. In particular, the temperature of each tool that provided the best formability of the blank was determined by coupled temperature-deformation analyses. A practical method that can greatly reduce the forming time by increasing the punch speed during the forming process was suggested.

  • PDF

Experimental Study on the Formability of Simultaneous Deep Drawing of Circular and Rectangular Cups with AZ31 Magnesium Alloy (AZ3l 마그네슘 판재의 더블 싱크형 딥드로잉 공정의 성형성에 관한 실험적 연구)

  • Kwon, K.T.;Kang, S.B.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.149-153
    • /
    • 2008
  • Since magnesium alloy sheets have been employed in industrial field which requires the light weight and thin engineering components, most of researches have been focused on the formability of magnesium ahoy sheet. In warm press forming of magnesium alloy sheet, it is important to control the sheet temperature by heating the sheet in closed die. When forming a commercial AZ31 magnesium alloy sheets which are 0.5mm and 1.0mm thick, respectively, time arriving at target temperature and temperature variation in magnesium alloy sheet have been investigated. Sheet metals were mostly formed in simple shapes such as circular or rectangular. Few studies about forming of complex shapes were reported. Thus, the formability of magnesium alloy sheet for complex shapes is investigated. The process variable for a double sink shape deep drawing with circular and rectangular shape was investigated by varying temperature, velocities, and clearances. Accordingly, temperature, velocities, and clearances suitable for forming were suggested through investigating the thickness variation of the product.

  • PDF

The Drawbility Estimation in warm and Hot Forming of AB31B Magnesium Sheet (AZ31B 마그네슘판재의 온간, 열간 딮드로잉 성형성 평가)

  • Choo, D. K.;Oh, S. W.;Lee, J. H.;Kang, C. G.
    • Transactions of Materials Processing
    • /
    • v.14 no.7 s.79
    • /
    • pp.628-634
    • /
    • 2005
  • The drawability of AZ31B magnesium sheet is estimated at various temperatures (200, 250, 300, 350, $400^{\circ}C$), forming speeds (20, 50, 100mm/min), thicknesses (0.8, 1.4mm) and blank holding forces (2.0, 2.8, 3.4kN). The deep drawing process (DDP) of circular cup is used in forming experiments. The results of deep drawing experiments show that the drawability is well at the range from 250 to $300^{\circ}C$, 50mm/min forming speed and 2.0kN blank holding force. The 0.8mm magnesium sheets were deformed better than 1.4 mm. Blank holding force was controlled in order to improve drawability and prevent the change of cup thickness. When blank holding force was controlled, tearing and thickness change were decreased and limit drawing ratio was improved from 2.1 to 3.0.

The Effect of Tool Surface Treatment and Temperature on Deep Drawability of AZ31 Magnesium Alloy Sheet (툴 표면처리 및 온도가 AZ31 마그네슘 판재의 드로잉성에 미치는 영향)

  • Choo D. G.;Lee J. H.;Kang C. G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.118-121
    • /
    • 2005
  • The square cup drawing of magnesium alloy AZ31 $(aluminum\;3\%,\;Zinc\;1\%)$ sheets was studied by experimental approach in various temperatures (200, 250, 300, 350, $400^{\circ}C$) when blank holding force (BHF) was controlled in real-time. And so on, the drawability was measured with the different die and punch coating. The square cup drawing test was performed by three different coated punches (CrN, TiCN, Non-coated). BHF was set about 2.0 KN, forming speed was 50 mm/min, blank thickness were 0.5, 1.0mm and the cup size was 40 mm by 60 mm after forming. The experimental data of square cup drawing test show that the tools coating and temperature were effect on the drawbility.

  • PDF