• Title/Summary/Keyword: Magnesium AZ31B

Search Result 98, Processing Time 0.027 seconds

A Study on the Weldability of Magnesium Alloy by Laser Heat Source (I) - Comparison on Laser Weldability of AZ31B-H24 and AZ31B-O - (레이저 열원을 이용한 마그네슘 합금의 용접성에 관한 연구 (I) - AZ31B-H24 및 AZ31B-O의 레이저 용접성 비교 -)

  • Lee, Jung-Han;Kim, Jong-Do;Lee, Mun-Yong
    • Journal of Welding and Joining
    • /
    • v.30 no.5
    • /
    • pp.70-75
    • /
    • 2012
  • This study is related to the laser weldability of AZ31B magnesium alloy, an all-purpose wrought alloy with good strength and ductility. In general, AZ31B is classified into AZ31B-H24 and AZ31B-O depending on temper designation. Thus, in this study, the laser weldability of AZ31B-H24 and AZ31B-O was investigated and compared. CW Nd:YAG laser was used to produce bead and butt joints. And the effects of welding conditions on the weldability of these joints were examined in detail. As a result of this study, AZ31B-H24 was found to have thinner oxide film and smaller grain size compared with AZ31B-O. Due to such difference, in bead welding, AZ31B-H24 had more wide welding range for full penetration compared with AZ31B-O. Furthermore, it was also confirmed that AZ31B-H24 and AZ31B-O have different welding conditions to obtain stable keyhole in butt welding.

Development of Automotive Dash Panel Parts Using Warm Drawing of Magnesium Alloy AZ31B (마그네슘 합금 AZ31B 판재를 활용한 활용한 차체 Dash Panel 온간 성형 부품 개발)

  • Park, D.H.;Yun, J.J.;Tak, Y.H.;Lee, C.W.
    • Transactions of Materials Processing
    • /
    • v.24 no.4
    • /
    • pp.248-255
    • /
    • 2015
  • The warm drawing of magnesium alloy AZ31B sheet is affected by temperature because tensile elongation is changed due to the elevated temperature. In the current study, the effect of temperature was investigated for an automotive dash panel part by both experimental and FE analysis. Tensile tests were performed to obtain mechanical properties for various temperatures. AZ31B alloy sheet shows increased total elongation with increasing deformation temperature in the range of 200 to 300℃. The heating channel inserted into the die was used to regulate and to obtain an optimal temperature. A temperature controller was constructed to reduce temperature variation. Warm drawing of magnesium alloy AZ31B was performed to produce the desired shape of the lightweight automotive dash panel. The simulated results showed good agreement with the experimental results.

Experiments for Forming Limit Diagram and Springback Characteristics of AZ31B Magnesium Alloy Sheet at Elevated Temperature (AZ31B 마그네슘 합금판재의 온간 성형한계도 및 스프링백 특성 시험)

  • Choi, C.S.;Lee, H.S.;Kim, H.J.;Lee, K.T.;Kim, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.289-293
    • /
    • 2007
  • The effect of temperature on the forming limit diagram was investigated for AZ31B magnesium alloy sheet through the limit dome height test in the range from room temperature to $300^{\circ}C$. The formability of AZ31B sheet was improved significantly according to the increasing temperature. Also we studied the springback characteristics through the 2D draw bending test with different blank holding forces at elevated temperatures. Springback quantity was considerably reduced as temperature went up. The blank holding force in the range used, however, had little influence on springback. Experimental results obtained in this study may provide a material database for AZ31B sheet.

  • PDF

A Study on the Weldability of Magnesium Alloy by Laser Heat Source (II) - Mechanical Properties of laser-welded AZ31B-H24 and AZ31B-O - (레이저 열원을 이용한 마그네슘 합금의 용접성에 관한 연구 (II) - AZ31B-H24 및 AZ31B-O 레이저 용접부의 기계적 특성 -)

  • Lee, Jung-Han;Kim, Jong-Do;Lee, Mun-Yong
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.56-61
    • /
    • 2012
  • Magnesium alloy sheet which is commercially available in the market presently is AZ31B, a Mg-Al-Zn three elements alloy. AZ31B is used by being classified into AZ31B-H24 and AZ31B-O depending on temper designation. In this study, AZ31B-H24 and AZ31B-O alloy sheets with 1.25mm thickness were butt-welded using CW Nd:YAG laser. And the effect of materials on mechanical properties was investigated by tensile and hardness tests. As a result of this study, regardless of materials, the butt-welded joint did not show a significant difference in tensile strength and hardness values. However, compared with the basemetal, the AZ31B-O showed more outstanding mechanical properties than AZ31B-H24, and that is because H24 material lost the effect of work hardening during welding.

Experiments for Forming Limit Diagram and Springback Characteristics of AZ31B Magnesium Alloy Sheet at Elevated Temperature (AZ31B 마그네슘 합금판재의 온간 성형한계도 및 스프링백 특성 시험)

  • Kim, H.Y.;Choi, S.C.;Lee, H.S.;Kim, H.J.;Lee, K.T.
    • Transactions of Materials Processing
    • /
    • v.16 no.5 s.95
    • /
    • pp.364-369
    • /
    • 2007
  • The effect of temperature on the forming limit diagram was investigated for AZ31B magnesium alloy sheet through the limit dome height test in the range from room temperature to $300^{\circ}C$. The formability of AZ31B sheet was improved significantly according to the increasing temperature. Also we studied the springback characteristics through the 2D draw bending test with different blank holding forces at elevated temperatures. Springback quantity was considerably reduced as temperature went up. The blank holding force in the range used, however, had little influence on springback. Experimental results obtained in this study may provide a material database for AZ31B sheet.

A Study on the Mechanical Properties and Formability of Mg AZ31B Sheet (Mg AZ31B 판재의 기계적 특성과 성형성 분석)

  • Lee, G.H.;Yoon, T.W.;Kang, C.Y.
    • Transactions of Materials Processing
    • /
    • v.23 no.8
    • /
    • pp.495-500
    • /
    • 2014
  • Magnesium alloys are currently expected to be widely used for weight reduction of cars and as high efficient materials in the automotive and electronics industries. Although the specific strength of magnesium is excellent, it cannot be easily formed at room temperature due to its HCP structure. However in order to improve the formability of magnesium, it is necessary to investigate its formability in the warm temperature range. In the current study, the aim was to add to the magnesium property database so that the mass production of a magnesium car body can be accomplished. Warm tensile tests were conducted and the forming limit diagram was determined to confirm formability characteristics of magnesium AZ31B alloy sheet. In addition the bending formability and the magnesium damping capacity were evaluated for AZ31B and compared to SPRC440E which is a sheet steel used for car bodies.

Study on the Mechanical Properties of Laser Welded AZ31 Magnesium Alloy (AZ31 마그네슘 합금 레이저 용접부의 기계적 성질에 관한 연구)

  • Lee, M.Y.;Jeong, B.H.;Jeong, S.M.;Park, H.J.
    • Laser Solutions
    • /
    • v.9 no.1
    • /
    • pp.25-29
    • /
    • 2006
  • This study aimed to investigate the change of mechanical properties with the rolling direction and shielding condition during laser welding of AZ31 magnesium alloy. AZ31 magnesium alloy sheets of 1mm thickness were welded using a continuous wave Nd:YAG laser with and without Ar shielding gas. The effect of Ar shielding gas and rolling direction on the mechanical properties were investigated using Vickers hardness, transverse-weld tensile. Porosity in the weld metals was investigated using an optical microscope. The experimental results showed that mechanical properties of AZ31 magnesium alloy laser welds were upgraded compared to those of base metal. Mechanical properties of AZ31 magnesium alloy laser welds were not substantially changed when Ar shielding gas was supplied.

  • PDF

Springback Characteristics of AZ31B Magnesium Alloy Sheet at Elevated Temperature (AZ31B 마그네슘합금 판재의 고온 스프링백 특성)

  • Choi, S.C.;Lee, H.S.;Kim, H.J.;Lee, K.T.;Kim, H.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.60-63
    • /
    • 2007
  • The effect of process parameters on springback of AZ31B magnesium alloy sheet was investigated by performing 2D draw bending test at the elevated temperatures. And also the springback characteristics were studied different blank holding forces between 30 to 250 kgf. Springback was considerably reduced at higher temperatures than $200^{\circ}C$. The blank holding force in the range used, however, had little influence on springback in isothermal tests. For a given temperature, springback decreased with increasing blank holding force in non-isothermal tests.

  • PDF

Study of Plating Layer Formation of Lightweight Magnesium Alloy (AZ31B) (경량 마그네슘 합금(AZ31B)의 도금층 형성 연구)

  • Choi, Kyoung-Su;Choi, Soon-Don;Min, Bong-Ki;Lee, Seung-Hyeon;Sin, Hyeon-Jun
    • Journal of the Korean institute of surface engineering
    • /
    • v.44 no.6
    • /
    • pp.239-245
    • /
    • 2011
  • Magnesium alloys is the lightest by structural metals, but it is not good corrosion resistant because of pit, void. Particularly, AZ31B magnesium alloy sheets that have slag, scratch by rolling process indicate some defects. The objective of this research is to perform uniform plating on AZ31B by studying etching and zincate process. Especially, zincate treatment by zinc salt and pyrophosphate is the most important in the decoration plating. Dissolution of magnesium is reduced by the formation of uniform zinc conversion layer during strick and post process, which decreases defects for plating process.

Effect of Stress Ratio and Anisotropy on Fatigue Crack Propagation Behavior of AZ31B Magnesium Alloy (AZ31B 마그네슘합금의 피로균열성장에 미치는 응력비 및 이방성의 영향)

  • Kim, K.S.;Kim, M.K.;Kim, H.K.;Kim, C.O.
    • Journal of Power System Engineering
    • /
    • v.15 no.1
    • /
    • pp.39-44
    • /
    • 2011
  • This study was to investigate the effects of stress ratio and anisotropy on Fatigue Crack Propagation(FCP) behavior of rolled magnesium alloy AZ31B. The experimental materials were a Mg-Al-Zn magnesium alloy. The FCP test was conducted on compact tension specimen by a servo-hydraulic fatigue testing machine in air at room temperature. Compact tension specimens were prepared from the extruded parallel and vertical rolling direction. The test condition was frequency of 10Hz and sinusoidal load stress ratios are 0.1 and 0.7. The FCP rates was automatically measured by a compliance method. In the case of the FCP of AZ31B, the FCP of both direction of LT and TL by anisotropy of specimens are almost same value. In lower stress ratio, the FCP of the LT, TL specimens are increased in lower ${\Delta}K$ region but higher ${\Delta}K$ regions are almost same value. Finally, the result of observed the surface crack, it expressed the quasi-cleavage fracture in lower ${\Delta}K$ region and straight mark on the aspect of the facet in high ${\Delta}K$ region.