• Title/Summary/Keyword: Magnesium

Search Result 2,774, Processing Time 0.046 seconds

Effect of Mg Addition on the Microstructure and Mechanical Properties of Al-Li-Ce Alloys (Al-Li-Ce계 합금의 미세조직 및 기계적 특성에 미치는 Mg 첨가의 영향)

  • Byeong-Kwon Lee;Eun-Chan Ko;Yong-Ho Kim;Hyo-Sang Yoo;Hyeon-Taek Son;Sung-Kil Hong
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.393-399
    • /
    • 2023
  • In this study, changes in the microstructure and mechanical properties of cast and extruded Al-2Li-1Ce alloy materials were investigated as the Mg content was varied. The density decreased to 2.485, 2.46 and 2.435 g/cm3 when the Mg content in the Al-2Li-1Ce alloy was increased to 2, 4 and 6 wt%, respectively. Intermetallic compounds of Al11Ce3 were observed in all alloys, while the β-phase of Al3Mg2 was observed in alloys containing 6 wt% of Mg. In the extruded material, with increasing Mg content the average grain size decreased to 84.8, 71.6 and 36.2 ㎛, and the fraction of high-angle grain boundaries (greater than 15°) increased to 82.8 %, 88.6 %, and 91.8 %, respectively. This occurred because the increased Mg content promotes dynamic recrystallization during hot extrusion. Tensile test results showed that as the Mg content increased, both the yield strength and tensile strength increased. The yield strength reached 86.1, 107.3, and 186.4 MPa, and the tensile strength reached 215.2, 285, and 360.5 MPa, respectively. However, it is worth noting that the ductility decreased to 27.78 %, 25.65 %, and 20.72 % as the Mg content increased. This reduction in ductility is attributed to the strengthening effect resulting from the increased amount of dissolved Mg, and grain refinement due to dynamic recrystallization.

Analysis of Soil and Leaf Characteristics of Pear Orchards with Lime-Induced Chlorosis Leaves (배나무 엽 황화증상 발생 과원의 토양 및 엽 특성 분석)

  • In Bog Lee;Dae Ho Jung;Pyoung Ho Yi;Seung Tak Jeong;Yoon Kyeong Kim
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.4
    • /
    • pp.331-337
    • /
    • 2023
  • Physiological disorders in pear fruit are mainly caused by problems during the growing season, such as lack of calcium in the soil, poor drainage, low porosity, vigorous pruning, and excessive fruiting. In this study, soil physicochemical properties and leaf characteristics were analyzed in pear orchards in four regions of Korea where chlorosis symptoms occurred to determine the causes of chlorosis. The color of chlorotic leaves was diagnosed using the naked eye or SPAD and Hunter values. The soil of the chlorotic orchard had a significantly higher soil pH than that of the regular orchard. Although adequate soil depth was not significantly associated with chlorosis, combined with over-fertilization of the soil with lime, it could potentially impair plant iron uptake. Chlorotic leaves had significantly lower iron and calcium contents and significantly higher magnesium contents than those of regular leaves. Therefore, the intensive occurrence of chlorosis during secondary shoot development around June and July when it is hot and humid may be due to impaired iron and calcium absorption, leading to physiological disorders. To solve this problem, avoiding the over-application of lime and applying foliar fertilizers containing chelated iron is recommended.

Growth environment characteristics of the habitat of Epilobium hirsutum L., a class II endangered wildlife species

  • Kwang Jin Cho;Hyeong Cheol Lee;Sang Uk Han;Hae Seon Shin;Pyoung Beom Kim
    • Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.282-289
    • /
    • 2023
  • Background: As wildlife habitats are being destroyed and growth environments are changing, the survival of animals and plants is under threat. Epilobium hirsutum L., a species that inhabits wetlands, has held legally protected status since 2012. However, no specific measures are currently in place to protect its habitat, leading to a decline in remaining populations as a result of land use change and human activities. Results: The growth environment (including location, climate, land use, soil, and vegetation) of the five habitat sites (Samcheok, Taebaek1, Taebaek2, Cheongsong, Ulleung) of E. hirsutum L. was investigated and analyzed. These habitats were predominantly situated in flat areas with gentle south-facing slopes, at an average altitude of 452.7 m (8-726 m) above sea level in Gangwon-do and Gyeongsangbuk-do. The average annual temperature ranged 11.5℃ (9.2℃-12.9℃), whereas the average annual precipitation ranged 1,304.5 mm (1,062.7-1,590.7 mm). The surrounding land use status was mainly characterized by mountainous areas, and human interference, such as agricultural land and roads, was commonly found in proximity to these natural habitats. Soil physicochemical analysis revealed that the soil was predominantly sandy loam with a slightly high sand content. The average pH measured 7.64, indicating an alkaline environment, and electrical conductivity (EC) averaged 0.33 dS/m. Organic matter (OM) content averaged 66.44 g/kg, available phosphoric acid (P2O5) content averaged 115.73 mg/kg, and cation exchange capacity (CEC) averaged 23.43 cmolc/kg. The exchangeable cations ranged 0.09-0.43 cmol+/kg for potassium (K), 10.23-16.21 cmol+/kg for calcium (Ca), 0.67-4.94 cmol+/kg for magnesium (Mg), and 0.05-0.74 cmol+/kg for sodium (Na). The vegetation type was categorized as E. hirsutum community with high numbers of E. hirsutum L., Persicaria thunbergii (Siebold & Zucc.) H. Gross, Phragmites japonica Steud., Humulus japonicus (Siebold & Zucc.), and Bidens frondosa L.. An ecological flora analysis, including the proportion of lianas, naturalized plants, and annual herbaceous plants, revealed that the native habitat of E. hirsutum L. was ecologically unstable. Conclusions: Analysis of the habitat of E. hirsutum L., a class II endangered wildlife species, provided essential data for local conservation and restoration efforts.

The Behaviors of Phosphorus-32 and Ptoassium-42 under the Control of Thermoperiod and Potassium Level (가리(加里)와 온도주기성(溫度週期性)이 고구마 생육(生育) 및 인(燐)-32, 가리(加里)-42 동태(動態)에 미치는 영향(影響))

  • Kim, Y.C.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.1 no.1
    • /
    • pp.89-115
    • /
    • 1968
  • 1. The experiment was carried out for investigating the interaction between potassium nutrition and thermoperiod (as an environment regulating factor) in relation to behaviors of several nutrients including phosphorus-32 and Potassium-42 in IPOMOEA BATAS. 2. To obtain same condition to trace the behaviors of phosphorus and potassum-42 they were simultaneously incorporated to roots. The determination of each CPM by counting twice with adequate interval and calculating true CPM of each isotope according to different half-life, was carried out with satisfactory. 3. Some specific symptoms i.e, chlorosis and withering of growing point under the condition of lower potassium level were found and was accelerated by the low night temperature. 4. A manganese shortage in growing point of the lower potassium level was found by activiation analysis and very low distribution ratio of phosphorus-32 and potassium-42 in the growing point of the lower potassium level was manifested, though the contents of nitrogen, phosphorus, potassium, sodium and magnesium were not in great difference. 5. In addition to the low water content with appearence of "hard", shorterning internode and lower ratio of roots to shoot as well as the symptoms of potassium deficiency such as brown spot in leaf blade and necrosis of leaf margin were appeared at later stage of experiment at the lower potassium level. 6. Very stimulating vegetative growth, e.g, large plant length, leaf expansion, increasing node number and fresh weight as well as high ratio of roots to shoot, high water content was resulted in the condition of higher potassium level. 7. A specific interaction between higher potassium level and thermoperiod was found, that is, the largest tuber production and the largest ratio of roots to shoot were resulted in the combined condition of higher potassium level and constant temperature while the largest plant length, fresh weight etc. i.e. the most stimulative vegetative growth was resulted in the combined condition of higher potassium level and low night temperature. 8. Comparatively low water content in the former condition of stimulative tuber production was resulted(especially at the tuber thickening stage), while high water content in the latter condition of stimulative vegetation was resulted though the higher potassium level made generally high water contents. 9. The nitrogen contents of soluble and insoluble did not make distinct difference between the lower and higher potassium level. 10. Though the phosphorus contents were not distinctly different by the potassium level, the lower potassium level made the percentage of phosphorus increased at tuber forming stage accumulating more phosphorus in roots, while the higher potassium level decreased percentage of phosphorus at that stage. 11. The higher potassium level made distinctly high potassium contents than the lower potassium level and increased contents at the tuber forming stage through both conditions. 12. The sodium contents were low in the condition of higher potassium level than the lower potassium level and decreased at tuber forming stage in both conditions, on the contary of potassium. 13. Except the noticeable deficeney of manganese in the growing point of the lower potassium level, mangense and magnesium contents in other organs did not make distinct difference according to the potassium level. 14. Generally more uptake and large absorption rate of phosphorus-32 and potassium-42 were resulted at the higher potassium level, and the most uptake, and the largest absorption rate of phosphorus and potassium-42 (especially potassium-42 at tuber forming stage) were resulted in the condition of higher potassium level and constant temperature which made the highest tuber production. 15. The higher potassium level stimulated the translocation of phoshorus-32 and potassium-42 from roots to shoots while the lower potassium level suppressed or blocked the translocation. 16. Therefore, very large distribution rate of $p^{32}$, $K^{42}$ in shoot, especially, in growing point, compared with roots was resulted in the higher potassium level. 17. The lower potassium level suppressed the translocation of phosporus-32 from roots to shoot more than that of potassium-42. 18. The uptake of potassium-42 and translocation in IPOMOEA BATATAS were more vivid than phosphorus-32. 19. A specific interaction between potassium nutrition and thermoperiod which resulted the largest tuber production etc. was discussed in relation to behaviors of minerals and potasium-42 etc. 20. Also, the specific effect of the lower and higher potassium level on the growth pattern of IPOMOEA BATATAS were discussed in relation to behaviors of minerals and isotopes. 21. An emphasize on the significance of the higher potassium level as well as the interaction with the regulating factor and problem of potassium level (gradient) for crops product ion were discussed from the point of dynamical and variable function of potassium.

  • PDF

Current Status and Perspectives in Varietal Improvement of Rice Cultivars for High-Quality and Value-Added Products (쌀 품질 고급화 및 고부가가치화를 위한 육종현황과 전망)

  • 최해춘
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47
    • /
    • pp.15-32
    • /
    • 2002
  • The endeavors enhancing the grain quality of high-yielding japonica rice were steadily continued during 1980s-1990s along with the self-sufficiency of rice production and the increasing demands of high-quality rices. During this time, considerably great progress and success was obtained in development of high-quality japonica cultivars and quality evaluation techniques including the elucidation of interrelationship between the physicochemical properties of rice grain and the physical or palatability components of cooked rice. In 1990s, some high-quality japonica rice cultivars and special rices adaptable for food processing such as large kernel, chalky endosperm, aromatic and colored rices were developed and its objective preference and utility was also examined by a palatability meter, rapid-visco analyzer and texture analyzer, Recently, new special rices such as extremely low-amylose dull or opaque non-glutinous endosperm mutants were developed. Also, a high-lysine rice variety was developed for higher nutritional utility. The water uptake rate and the maximum water absorption ratio showed significantly negative correlations with the K/Mg ratio and alkali digestion value(ADV) of milled rice. The rice materials showing the higher amount of hot water absorption exhibited the larger volume expansion of cooked rice. The harder rices with lower moisture content revealed the higher rate of water uptake at twenty minutes after soaking and the higher ratio of maximum water uptake under the room temperature condition. These water uptake characteristics were not associated with the protein and amylose contents of milled rice and the palatability of cooked rice. The water/rice ratio (in w/w basis) for optimum cooking was averaged to 1.52 in dry milled rices (12% wet basis) with varietal range from 1.45 to 1.61 and the expansion ratio of milled rice after proper boiling was average to 2.63(in v/v basis). The major physicochemical components of rice grain associated with the palatability of cooked rice were examined using japonica rice materials showing narrow varietal variation in grain size and shape, alkali digestibility, gel consistency, amylose and protein contents, but considerable difference in appearance and texture of cooked rice. The glossiness or gross palatability score of cooked rice were closely associated with the peak, hot paste and consistency viscosities of viscosities with year difference. The high-quality rice variety "IIpumbyeo" showed less portion of amylose on the outer layer of milled rice grain and less and slower change in iodine blue value of extracted paste during twenty minutes of boiling. This highly palatable rice also exhibited very fine net structure in outer layer and fine-spongy and well-swollen shape of gelatinized starch granules in inner layer and core of cooked rice kernel compared with the poor palatable rice through image of scanning electronic microscope. Gross sensory score of cooked rice could be estimated by multiple linear regression formula, deduced from relationship between rice quality components mentioned above and eating quality of cooked rice, with high probability of determination. The $\alpha$-amylose-iodine method was adopted for checking the varietal difference in retrogradation of cooked rice. The rice cultivars revealing the relatively slow retrogradation in aged cooked rice were IIpumbyeo, Chucheongyeo, Sasanishiki, Jinbubyeo and Koshihikari. A Tonsil-type rice, Taebaegbyeo, and a japonica cultivar, Seomjinbyeo, showed the relatively fast deterioration of cooked rice. Generally, the better rice cultivars in eating quality of cooked rice showed less retrogradation and much sponginess in cooled cooked rice. Also, the rice varieties exhibiting less retrogradation in cooled cooked rice revealed higher hot viscosity and lower cool viscosity of rice flour in amylogram. The sponginess of cooled cooked rice was closely associated with magnesium content and volume expansion of cooked rice. The hardness-changed ratio of cooked rice by cooling was negatively correlated with solids amount extracted during boiling and volume expansion of cooked rice. The major physicochemical properties of rice grain closely related to the palatability of cooked rice may be directly or indirectly associated with the retrogradation characteristics of cooked rice. The softer gel consistency and lower amylose content in milled rice revealed the higher ratio of popped rice and larger bulk density of popping. The stronger hardness of rice grain showed relatively higher ratio of popping and the more chalky or less translucent rice exhibited the lower ratio of intact popped brown rice. The potassium and magnesium contents of milled rice were negatively associated with gross score of noodle making mixed with wheat flour in half and the better rice for noodle making revealed relatively less amount of solid extraction during boiling. The more volume expansion of batters for making brown rice bread resulted the better loaf formation and more springiness in rice breed. The higher protein rices produced relatively the more moist white rice bread. The springiness of rice bread was also significantly correlated with high amylose content and hard gel consistency. The completely chalky and large grain rices showed better suitability far fermentation and brewing. The glutinous rice were classified into nine different varietal groups based on various physicochemical and structural characteristics of endosperm. There was some close associations among these grain properties and large varietal difference in suitability to various traditional food processing. Our breeding efforts on improvement of rice quality for high palatability and processing utility or value-adding products in the future should focus on not only continuous enhancement of marketing and eating qualities but also the diversification in morphological, physicochemical and nutritional characteristics of rice grain suitable for processing various value-added rice foods.ice foods.

The Acid-resistant Characteristic of Organic Acid Tolerance Mutant of Leuconostoc paramesenteroides (Leuconostoc paramesenteroides 유기산 내성 변이균주의 내산성 특성)

  • Kim, Young-Hwan;Kim, Hee-Zoong;Oh, Kyun-Sik;Kim, Sun-Young;Lee, Si-Kyung;Kang, Sang-Mo
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.424-429
    • /
    • 2008
  • To investigate the acid tolerance characteristics of the acid-resistant mutant, Leuconostoc paramesenteroides P-200, as a kimchi starter, this study examine proton permeability, ATPase activity, glycolysis activity, $Mg^{2+}$ release, and membrane fatty acid composition, and compared the data to that of its wild-type, L. paramesenteroides LP-W. In the proton permeability experiment, the LP-W and P-200 strains' average maximum half-time $(t_{1/2})$ values for pH equilibration through the cell membrane were approximately 5.7 and 9.3 min in 150mM KCl solution, and 4.2 and 8.3 min in 3% NaCl solution, respectively. Their values and pH levels for maximal specific ATPase activity showed that P-200 had greater activity than LPW. And the results of pH-dependent glycolysis activity showed that P-200 had greater activity than LP-W. Furthermore, after 2 hr at pH 4.0, LP-W and P-200 had percent magnesium release values of approximately 12% and 34%, respectively. A comparison of their membrane fatty acid compositions indicated that C18 and cyclo-C19 were the major different fatty acids between the two strains, and their contents of C18 and cyclo-C19 were 2.5% and not detected, respectively, in LP-W, and 6.4% and 11.4%, respectively, in P-200. These results indicate that the P-200 strain has significantly improved acid tolerance as compared to its wild type, LP-W.

Management of Recycled Nutrient Resources using Livestock Waste in Large-Scale Environment-Friendly Agricultural Complex (광역친환경농업단지의 경축순환자원 양분관리)

  • Moon, Young-Hun;Ahn, Byung-Koo;Cheong, Seong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.177-184
    • /
    • 2012
  • This experiment was carried out to investigate soil properties and the requirement of livestock manure compost in a large-scale environment-friendly agricultural complex (EFAC), Gosan, Wanju-gun, Jeonbuk. Total cultivation area of major crops was 2,353 ha. This complex area included different types of environment-friendly cropping sections (402.9ha) and livestock farming including 21,077 Korean beef cattle, 1,099 dairy cow, and 32,993 hog. Amount of livestock waste carried in to Resource Center for Crop and Livestock Farming (RCCLF) was 32 Mg per day and the production of manure compost was 9,600 Mg per year. The manure contained 1.4% total nitrogen (T-N), 2.7% phosphorus as $P_2O_5$, 2.1% potassium as $K_2O$, 0.9% magnesium as MgO, 2.5% calcium as CaO. Amount of compost used in the EFAC was 6,588 Mg per year. Soil pH values in the EFAC were varied as follows: 78.1% of paddy field soil, 58.2% of upland soil, 60.3% of orchard field soil, and 62.1% of greenhouse soil were in proper range. For the content of soil organic matter, 41.7% of paddy field soil, 46.5% of upland soil, 40.5% of orchard field soil, and 81.4% of greenhouse soil were higher than proper range. The content of available phosphorus was mostly higher than proper value on the different fields except upland soil. The contents of exchangeable $K^+$, $Ca^{2+}$, and $Mg^{2+}$ were also exceeded in the orchard field and greenhouse soils. In addition, microbial population, especially aerobic bacteria, in the EFAC was higher than that in regular farming land.

Status of Mineral Resources and Mining Development in North Korea (북한 광물자원 부존 및 개발현황 개요)

  • Koh, Sang Mo;Lee, Gill Jae;Yoon, Edward
    • Economic and Environmental Geology
    • /
    • v.46 no.4
    • /
    • pp.291-300
    • /
    • 2013
  • The potential mineral resources in North Korea are magnesite, limestone, coal, graphite, iron, gold, silver, lead, and zinc. North Korea is mainly exporting coal and iron to China(70%) and EU countries. Gold ore reserves(or resources) in North Korea are about 2,000 tons and annual production is 2 tons based on metal. Major gold mines are Sooan, Holdong, and Daeyoodong mines and six smelters are operating. Fe ore reserves (or resources) are 4.3 billion tons and annual production is about 5 million tons based on 63.5% Fe. Major iron mines are Moosan, Leewon, Eunryul, Shinwon, and Jaeryong and 7 smelters are operating. Pb and Zn ore reserves(or resources) are Pb 470,000 tons and Zn 15 million tons, and annual productions are about Pb 26,000 tons and Zn 50,000 tons based on metal respectively. Major Pb-Zn mines are Gumdock and Seongcheon mines. Magnesite ore reserves(or resources) are 2.8 billion tons (95% MgO) and annual production is about 150,000 tons. Major magnesite mines are Ryongyang, Daeheung Youth and Ssangryong mines, and 5 magnesium refractory factories are operating. Apatite ore reserves(or resources) are 340 million tons(30% $P_2O_5$) and annual production is about 300,000 tons(crude ore). Major apatite mines are Daedaeri, Dongam and Poongnyen mines. Coal is established as an important strategic fuel mineral resources and is a major energy source in North Korea. Coal ore reserves(or resources) are 18.6 billion tons and annual production is about 20 million tons. The main coal fields is located in southern Pyongan and the Jigdong mine is the biggest in North Korea.

Analysis of Contributing Factor for Cation Ratio to Calcium in Nutrient Solution on the Incidence of Blossom-end Rot in Sweet Pepper 'RZ208' Grown in Hydroponics (파프리카 배꼽썩음과 발생에 미치는 배양액 내 칼슘에 대한 양이온 기여인자 분석)

  • Lee, Hye-Jin;Oh, Jeong-Sim;Choi, Ki-Young;Lee, Yong-Beom;Bae, Jong-Hyang;Rhee, Han-Cheol;Kim, Dong-Eok
    • Horticultural Science & Technology
    • /
    • v.30 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • This study aimed to investigate the responses of plant growth and blossom-end rot (BER) incidence to calcium (Ca) and its three kinds of antagonistic cations (K, Mg, and $NH_4$-N) with various ratios in nutrient solution for sweet paper (Capsicum annuum L. 'RZ208'). Both Ca to each cation and Ca to a series of cation combinations, such as potassium (K), ammonium nitrate ($NH_4$), or magnesium (Mg) were more influential to the fruit growth and quality than plant growth. Especially, the BER incidence was significantly influenced by the ratio treatments. For examples, when Ca:(K + Mg) or Ca:(K + Mg + $NH_4$) ratio was 1:2 the highest incident rate of BER about 70.3 or 86.3% was observed, lowering the marketable yield to 19 or 13.7% of the total yield, respectively. The correlation coefficiencies (= r) to relationships between the BER and K as well as BER and $NH_4$ were 0.82 (P < 0.05) and 0.65 (P < 0.05), respectively. Combination only with the Mg element was not correlated with the BER incidence. However, when both of the K and Mg concentrations were 0.65 (P < 0.05). The highest correlation coefficiency, 0.92 (P < 0.05), was found to a relationship between the BER and the tree elemental combination.

Effect of Soil Water Potential on the Fruit Quality and Yield in Fertigation Cultivation of Paprika in Summer (여름철 파프리카 관비재배시 토양수분포텐셜이 과실품질 및 수량에 미치는 영향)

  • Rhee, Han Cheol;Choi, Gyoeng Lee;Jeong, Jae Woan;Cho, Myeung Hwan;Yeo, Kyung Hwan;Kim, Da Mi;An, Chul Geun;Lee, Dong Yul
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.378-384
    • /
    • 2013
  • This study was conducted to identify the effect of soil water potential on the fruit quality and yield of paprika in summer fertigation cultivation. Treatments of soil water potential during cultivation were composed of -10, -20, and -30 kPa, respectively. The plant height of early growth was increased by high soil water potential (-10 kPa) treatment all of 'Cupra' and 'E499524' (mini-paprika) varieties. Mean fruit weight was increased by -20 kPa soil water potential treatment compared with the other treatments. The fruit number per plant was not affected by soil water potential in 'Cupra' variety but was increased by -20 kPa soil water potential treatment in E499524 variety (mini-paprika). The yield of soil water potential treatment of -20 kPa was higher than those of the other treatments. The flesh thickness and sugar content were not affected by soil water potential in 'Cupra' and 'E499524' (mini-paprika) varieties. The incidence of fruit cracking was decreased with decreasing soil water potential. Mineral contents of plants such as nitrogen, potassium, calcium, magnesium etc. were not affected in soil water potential.