• Title/Summary/Keyword: Magma activity

Search Result 65, Processing Time 0.029 seconds

The Forming Process of the Maisan and Nearby Famous Mountains and the Related Mountain Ranges and Water Systems (마이산과 주변 명산의 형성과정과 그에 관련된 산맥과 수계 변화)

  • Oh, Changwhan;Lee, Seunghwan;Lee, Boyoung
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.201-219
    • /
    • 2017
  • The Jinan Basin which includes Maisan locates in the central part of the northern boundary of the Yeongnam Massif. The basement rocks of the Jinan Basin and surrounding area are Precambrian gneiss and Mesozoic granite which were exposed on the surface before Cretaceous. The Jinan Basin, one of the Cretaceous pull-apart basins in South Korea, formed along the Yongdong-Gwangju fault system. Maisan is composed of conglomerate deposited in the eastern slope of the Jinan Basin showing the shape of horse ears and the unusual topography where many tafonies were developed. The strike slip fault that caused the Jinan Basin was connected to the deep depth so that the magma formed at 200 km depth could have extruded on the surface causing active volcanic activity in and around the Jinan basin. As a result, Cheonbansan composed of pyroclastic rocks, Gubongsan consisting of volcanic neck and WoonilamBanilam formed by the lava flow, appear around Maisan forming a specific terrain. After the formation of the Jinan Basin and surrounding volcanic rocks, they uplifted to form mountains including Masian; the uplifting time may be ca. 69-38 Ma. At this time, the Noryeong mountain range may be formed in the regions which extended from Chugaryeong through Muju and Jinan to Hampyeong dividing the Geumgang and Seomjingang water systems. Due to the ecological barrier, the Noryeong mountain range, Coreoleuciscus splendidus living in the Geumgang water systems was differentiated from that in the Soemjingang water system. In addition, the Geumgang and Mangyeong-Dongjingang water systems were separated by the Unjangsan, which developed in the NNW direction. As a result, diverse ecosystem have been established in and around Maisan and at the same time, diverse cultural and historical resources related to Maisan's unique petrological features, were also established. Therefore, Maisan and surrounding area can be regarded as a place where a geotourism can be successfully established by combining the ecological, cultural and historical resources with a geological heritage. Therefore Maisan and surrounding areas have a high possibility to be a National Geopark and UNESCO Global Geopark.

A Review on Monitoring Mt. Baekdu Volcano Using Space-based Remote Sensing Observations (인공위성 원격탐사를 이용한 백두산 화산 감시 연구 리뷰)

  • Hong, Sang-Hoon;Jang, Min-Jung;Jung, Seong-Woo;Park, Seo-Woo
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_4
    • /
    • pp.1503-1517
    • /
    • 2018
  • Mt. Baekdu is a stratovolcano located at the border between China and North Korea and is known to have formed through its differentiation stage after the Oligocene epoch in the Cenozoic era. There has been a growing interest in the magma re-activity of Mt. Baekdu volcano since 2010. Several research projects have been conducted by government such as Korea Meteorological Administration and Korea Institute of Geoscience and Mineral Resources. Because, however, the Mt. Baekdu volcano is located far from South Korea, it is quite difficult to collect in-situ observations by terrestrial equipment. Remote sensing is a science to analyze and interpret information without direct physical contact with a target object. Various types of platform such as automobile, unmanned aerial vehicle, aircraft and satellite can be used for carrying a payload. In the past several decades, numerous volcanic studies have been conducted by remotely sensed observations using wide spectrum of wavelength channels in electromagnetic waves. In particular, radar remote sensing has been widely used for volcano monitoring in that microwave channel can gather surface's information without less limitation like day and night or weather condition. Radar interferometric technique which utilized phase information of radar signal enables to estimate surface displacement such as volcano, earthquake, ground subsidence or glacial movement, etc. In 2018, long-term research project for collaborative observation for Mt. Baekdu volcano between Korea and China were selected by Korea government. A volcanic specialized research center has been established by the selected project. The purpose of this paper is to introduce about remote sensing techniques for volcano monitoring and to review selected studies with remote sensing techniques to monitor Mt. Baekdu volcano. The acquisition status of the archived observations of six synthetic aperture radar satellites which are in orbit now was investigated for application of radar interferometry to monitor Mt. Baekdu volcano. We will conduct a time-series analysis using collected synthetic aperture radar images.

Granite Dike Swarm and U-Pb Ages in the Ueumdo, Hwaseong City, Korea (경기도 화성시 우음도 일원의 화강암 암맥군과 U-Pb 연령)

  • Chae, Yong-Un;Kang, Hee-Cheol;Kim, Jong-Sun;Park, Jeong-Woong;Ha, Sujin;Lim, Hyoun Soo;Shin, Seungwon;Kim, Hyeong Soo
    • Journal of the Korean earth science society
    • /
    • v.43 no.5
    • /
    • pp.618-638
    • /
    • 2022
  • The Middle Jurassic granite dike swarm intruding into the Paleoproterozoic banded gneiss is pervasively observed in Ueumdo, Hwaseong City, mid-western Gyeonggi Massif. Based on their cross-cutting relationships in a representative outcrop, there are four dikes (UE-A, UE-C, UE-D, UE-E), and depending on the direction, there are three granite dike groups, which are NW- (UE-A dike), NW to WNW- (UE-C dike), and NE-trending (UE-D and UE-E dikes). These granite dikes are massive, medium-to coarse-grained biotite granites, and their relative ages observed in outcrops are in the order of UE-A, UE-D (=UE-E), and UE-C. The geometric analysis of the dikes indicates that the UE-A and UE-C dikes intrude under approximately NE-SW trending horizontal minimum stress fields. The UE-A dike, which showed a relatively low average SiO2 content by major element analysis, is a product of early magma differentiation compared to other dikes; therefore, it is consistent with the relative age of each dike. The 206Pb/238U weighted mean ages for each dike obtained from SHRIMP zircon U-Pb dating were calculated to be 167 Ma (UE-A), 164 Ma (UE-C), 167 Ma (UE-D), and 167 Ma (UE-E), respectively. The samples of the UE-A, UE-D, and UE-E dikes showed very similar ages. The UE-C dike shows the youngest age, which is consistent with the results of the relative age in the outcrops and major element analysis. Therefore, the granite dikes intruded into the Middle Jurassic (approximately 167 and 164 Ma), coinciding with those of the Gyeonggi Massif, where the Middle Jurassic plutons are geographically widely distributed. This result indicates that the wide occurrence of the Middle Jurassic plutons on the Gyeonggi Massif was formed as a result of igneous activity moving in the northwest direction with the shallower subduction angle of the subducting oceanic plate during the Jurassic.

Water Level and Quality Variations of CO2-rich Groundwater and Its Surrounding Geology in the Chungju Angseong Spa Area, South Korea: Considerations on Its Sustainability (충주 앙성지역 탄산천의 수위/수질 변동과 주변 지질 특성: 탄산천의 지속가능성에 대한 고찰)

  • Moon, Sang-Ho;Kee, Weon-Seo;Ko, Kyung-Seok;Lee, Cholwoo;Choi, Hanna;Koh, Dong-Chan
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.477-495
    • /
    • 2022
  • This study examined the sustainability of CO2-rich water by analyzing the water level and water quality change pattern with the amount of its use in Angseong area, Chungju. The origin and supply of CO2 component were discussed in consideration of 87Sr/86Sr ratio, occurrence of CO2-rich fluid inclusions in nearby W-Mo deposits and other surrounding geological characteristics. According to the data from 1986 to 2017, the depth of the water level of CO2-rich water was significantly lowered in the late period (2009-2015) than in the early period (1986-1992) of the development of hot spa wells, and the optimal yields for pumping tests also showed a tendency to gradual decrease. Concentrations of CO2 component also decreased continuously in the later stages compared to the early stages of development, but it has been stable since 2012. It is inferred that the geological environment related to forming W-Mo quartz vein deposits (0.5×1.5×several km) around the study area are largely involved in the origin and supply of CO2 component, and the supply of CO2 component is not infinitely supplied from deep current magma activity. Rather, since it is finitely supplied from a restricted subsurface region formed in the past geological period, it is necessary to efficiently control its use in order to maintain the sustainability of CO2-rich water in the study area.

Mesothermal Gold Mineralization in the Boseong-Jangheung area, Chollanamdo-province (전라남도 보성-장흥지역의 중열수 금광화작용)

  • 허철호;윤성택;소칠섭
    • Economic and Environmental Geology
    • /
    • v.35 no.5
    • /
    • pp.379-393
    • /
    • 2002
  • Within the Boseong-Jangheung area of Korea, five hydrothermal gold (-silver) quartz vein deposits occur. They have the characteristic features as follows: the relatively gold-rich nature of e1ectrurns; the absence of Ag-Sb( -As) sulfosalt mineral; the massive and simple mineralogy of veins. They suggest that gold mineralization in this area is correlated with late Jurassic to Early Cretaceous, mesothermal-type gold deposits in Korea. Fluid inclusion data show that fluid inclusions in stage I quartz of the mine area homogenize over a wide temperature range of 200$^{\circ}$ to 460$^{\circ}$C with salinities of 0.0 to 13.8 equiv. wt. % NaCI. The homogenization temperature of fluid inclusions in stage II calcite of the mine area ranges from 150$^{\circ}$ to 254$^{\circ}$C with salinities of 1.2 to 7.9 equiv. wt. % NaCI. This indicates a cooling of the hydrothermal fluid with time towards the waning of hydrothermal activity. Evidence of fluid boiling including CO2 effervescence indicates that pressures during entrapment of auriferous fluids in this area range up to 770 bars. Calculated sulfur isotope composition of auriferous fluids in this mine area (${\delta}^34S$_{{\Sigma}S}$$\textperthousand$) indicates an igneous source of sulfur in auriferous hydrothermal fluids. Within the Sobaegsan Massif, two representative mesothermal-type gold mine areas (Youngdong and Boseong-Jangheung areas) occur. The ${\delta}^34S values of sulfide minerals from Youngdong area range from -6.6 to 2.3$\textperthousand$ (average=-1.4$\textperthousand$, N=66), and those from BoseongJangheung area range from -0.7 to 3.6$\textperthousand$ (average=1.6$\textperthousand$, N=39). These i)34S values of both areas are comparatively lower than those of most Korean metallic ore deposits (3 to 7TEX>$\textperthousand$). And, within the Sobaegsan Massif, the ${\delta}^34S values of Youngdong area are lower than those of Boseong-Jangheung area. It is inferred that the difference of ${\delta}^34S values within the Sobaegsan Massif can be caused by either of the following mechanisms: (1) the presence of at least two distinct reservoirs (both igneous, with ${\delta}^34S values of < -6 $\textperthousand$ and 2$\pm$2 %0) for Jurassic mesothermal-type gold deposits in both areas; (2) different degrees of the mixing (assimilation) of 32S-enriched sulfur (possibly sulfur in Precambrian pelitic basement rocks) during the generation and/or subsequent ascent of magma; and/or (3) different degrees of the oxidation of an H2S-rich, magmatically derived sulfur source ${\delta}^34S = 2$\pm$2$\textperthousand$) during the ascent to mineralization sites. According to the observed differences in ore mineralogy (especially, iron-bearing ore minerals) and fluid inclusions of quartz from the mesothermal-type deposits in both areas, we conclude that pyrrhotite-rich, mesothermal-type deposits in the Youngdong area formed from higher temperatures and more reducing fluids than did pyrite(-arsenopyrite)-rich mesothermal-type deposits in the Boseong-Jangheung area. Therefore, we prefer the third mechanism than others because the ${\delta}^34S values of the Precambrian gneisses and Paleozoic sedimentary rocks occurring in both areas were not known to the present. In future, in order to elucidate the provenance of ore sulfur more systematically, we need to determine ${\delta}^34S values of the Precambrian metamorphic rocks and Paleozoic sedimentary rocks consisting the basement of the Korean Peninsula including the Sobaegsan Massif.