• 제목/요약/키워드: Magic Formula Model

검색결과 12건 처리시간 0.019초

Magic Formula 모델을 이용한 드럼세탁기용 마찰댐퍼의 동역학적 모델링과 해석 (Dynamic Modeling and Analysis of a Friction Damper in Drum-type Washing Machine with a Magic Formula Model)

  • 박진홍;이정한;유완석;노경훈;정보선
    • 한국소음진동공학회논문집
    • /
    • 제19권10호
    • /
    • pp.1034-1042
    • /
    • 2009
  • In this paper, the magic formula model was applied for a friction damper in a drum-type washing machine. To describe characteristics of the hysteretic damping force, Physical tests were first carried out to get experimental results using an MTS machine. Then, parameters for the magic formula model were determined from the experimental curves. The ADAMS and MATLAB programs were used for the multibody modeling of the damper and process for parameter identification. The model of drum-type washing machine was applied for a dynamic model of friction damper, in which the accuracy of the proposed damper model was verified.

Magic Formula를 이용한 아스팔트 노면에서의 농업용 트랙터의 견인력 추정 (Drawbar Pull Estimation in Agricultural Tractor Tires on Asphalt Road Surface using Magic Formula)

  • 김경대;김지태;안다빈;박정호;조승제;박영준
    • 한국기계가공학회지
    • /
    • 제20권11호
    • /
    • pp.92-99
    • /
    • 2021
  • Agricultural tractors drive and operate both off-road and on-road. Tire-road interaction significantly affects the tractive performance of a tractor, which is difficult to predict numerically. Many empirical models have been developed to predict the tractive performance of tractors using the cone index, which can be measured through simple tests. However, a magic formula model that can determine the tractive performance without a cone index can be used instead of traditional empirical models as the cone index cannot be measured on asphalt roads. The aim of this study was to predict the tractive performance of a tractor using the magic formula tire model. The traction force of the tires on an asphalt road was measured using an agricultural tractor. The dynamic wheel load was calculated to derive the coefficients of the traction-slip curve using the measured static wheel load and drawbar pull of the tractor. Curve fitting was performed to fit the experimental data using the magic formula. The parameters of the magic formula tire model were well identified, and the model successfully determined the coefficient of traction of the tractor.

비선형 타이어모델을 이용한 4WS 자동차의 주행특성 해석 (Dynamic Characteristics Analysis of Four Wheel Steering Vehicles Using Nonlinear Tire Model)

  • 김형내;김석일;김동룡;김건상
    • 한국자동차공학회논문집
    • /
    • 제5권1호
    • /
    • pp.110-119
    • /
    • 1997
  • Four wheel steering(4WS) systems which can control the lateral and yaw motions of vehicles by steering front and rear wheels simultaneously, have been regarded as effective for improving the stability and handing performance of vehicles. However, since the 4WS systems depend only on the lateral force of tire, they have some limitation due to the nonlinear characteristics of tire related with the saturation phenomenon of lateral force to the slip angle of tire in a near-limit-performance maneuvering range. In this study, in other to evaluate the effect of nonlinear characteristics of tire on the dynamic performance of vehicles, a new concept for driving the cornering stiffness of nonlinear tire by using the "Magic Formula" tire model is proposed. In addition, the nonlinear 4WS vehicle model is constructed based on the proposed cornering stiffness of nonlinear tire. It is noted from simulation that the nonlinear characteristics of tire affect greatly on the 4WS vehicle performance.rformance.

  • PDF

관측기를 이용한 노면과 타이어 간의 마찰계수 추정 (Estimation of Tire-Road Friction Coefficient using Observers)

  • 정태영;이경수;송철기
    • 제어로봇시스템학회논문지
    • /
    • 제4권6호
    • /
    • pp.722-728
    • /
    • 1998
  • In this paper real-time estimation methods for identifying the tire-road friction coefficient are presented. Taking advantage of the Magic Formula Tire Model, the similarity technique and the specific model for the vehicle dynamics, a reduced order observer/filtered-regressor-based method is proposed. The Proposed method is evaluated on simulations of a full-vehicle model with an eight state nonlinear vehicle/transmission model and nonlinear suspension model. It has been shown through simulations that it is possible to estimate the tire-road friction from measurements of engine rpm, transmission output speed and wheel speeds using the proposed identification method. The proposed method can be used as a useful option as a part of vehicle collision warning/avoidance systems and will be useful in the implementation of a warning algorithm since the tire-road friction can be estimated only using RPM sensors.

  • PDF

롤 운동을 고려한 차량의 정상상태 선회주행에 관한 연구 (A Study on the Steady-State Cornering of a Vehicle Considering Roll Motion)

  • 이장무;윤중락;강주석;배상우;탁태오
    • 한국자동차공학회논문집
    • /
    • 제5권6호
    • /
    • pp.89-102
    • /
    • 1997
  • In this study, the steady state cornering behavior of a vehicle is investigated by using a numerical model that has parameters associated with roll motion. The nonlinear characteristics of tire cornering forces and aligning torques are presented in analytical forms using the magic formula. The sets of nonlinear algebraic equations that govern the cornering motion are solved by the Newton-Raphson iteration method. The vehicle design parameters are measured by SPMD(Suspension Parameter Measuring Device), and its results are verified by carrying out a skid pad test. The design parameters that are most affecting the steady state cornering behavior are classified into four factors, and the contributions of the factors to understeer gradient are then calculated.

  • PDF

타이어 힘 추정을 위한 파라미터 최적화 파제카 모델과 인공 신경망 모델 간의 비교 연구 (A Comparative Study between the Parameter-Optimized Pacejka Model and Artificial Neural Network Model for Tire Force Estimation)

  • 차현수;김자유;이경수;박재용
    • 자동차안전학회지
    • /
    • 제13권4호
    • /
    • pp.33-38
    • /
    • 2021
  • This paper presents a comparative study between the parameter-optimized Pacejka model and artificial neural network model for the tire force estimation. The two different approaches are investigated and compared in this study. First, offline optimization is conducted based on Pacejka Magic Formula model to determine the proper parameter set for the minimization of tire force error between the model and test data set. Second, deep neural network model is used to fit the model to the tire test data set. The actual tire forces are measured using MTS Flat-Track test platform and the measurements are used as the reference tire data set. The focus of this study is on the applicability of machine learning technique to tire force estimation. It is shown via the regression results that the deep neural network model is more effective in describing the tire force than the parameter-optimized Pacejka model.

비선형 타이어모델 기반 MPC를 이용한 차량 안정화 (Vehicle Stabilization Using MPC Based on Nonlinear Tire Model)

  • 송유호;김한수;김승기;김영우;이태희;허건수
    • 한국자동차공학회논문집
    • /
    • 제24권6호
    • /
    • pp.730-736
    • /
    • 2016
  • Recent research suggests the various applications of Model Predictive Control on vehicle systems. In numerous cases, nonlinear tire models such as the Magic Formula, which are highly complex and are more detailed than necessary, are used. This paper presents a nonlinear tire model that excludes the region of negative slope but expresses the nonlinear properties of tire well enough for tracking the lane of a racing course. The proposed inverse tire model can also be used to calculate the slip angle from the tire force. Thus, the model can be utilized to design the Model Predictive Controller.

비선형 관측기를 이용한 차량의 타이어 횡력 감지시스템 개발 (Development of Tire Lateral Force Monitoring Systems Using Nonlinear Observers)

  • 김준영;허건수
    • 한국자동차공학회논문집
    • /
    • 제8권4호
    • /
    • pp.169-176
    • /
    • 2000
  • Longitudinal and lateral forces acting on tires are known to be closely related to the tract-ability braking characteristics handling stability and maneuverability of ground vehicles. In thie paper in order to develop tire force monitoring systems a monitoring model is proposed utilizing not only the vehicle dynamics but also the roll motion. Based on the monitoring model three monitoring systems are developed to estimate the tire force acting on each tire. Two monitoring systems are designed utilizing the conventional estimation techniques such as SMO(Sliding Mode Observer) and EKF(Extended Kalman Filter). An additional monitoring system is designed based on a new SKFMEC(Scaled Kalman Filter with Model Error Compensator) technique which is developed to improve the performance of EKF method. Tire force estimation performance of the three monitoring systems is compared in the Matlab simulations where true tire force data is generated from a 14 DOF vehicle model with the combined-slip Magic Formula tire model. The built in our Lab. simulation results show that the SKFMEC method gives the best performance when the driving and road conditions are perturbed.

  • PDF

Development and Comparative Study on Tire Models In the AutoDyn7 Program

  • Han, Dong-Hoon;Sohn, Jeong-Hyun;Kim, Kwang-Suk;Lee, Jong-Nyun;Yoo, Wan-Suk;Lee, Byun-Hoon;Choi, Jae-Weon
    • Journal of Mechanical Science and Technology
    • /
    • 제14권7호
    • /
    • pp.730-736
    • /
    • 2000
  • In this paper, several tire models (Magic formula, Carpet plot, VA tire, DADS tire and STI tire) are implemented and compared. Since the STI (System Technology Inc.) tire model in the AutoDyn7 program is in a good agreement to NADSdyna STI tire model and experiment, it is selected as a reference tire model for the comparison. To compare tire models, input parameters of each tire model are extracted from the STI tire model to preserve the same tire properties. Several simulations are carried out to compare performances of tire models, i. e., bump simulation, lane change simulation, and pulse steering simulation. The performances in vehicle maneuverability are also compared with the four parameter evaluation method.

  • PDF

SKFMEC를 이용한 차량의 타이어 횡력 감지시스템 개발 (Development of Tire Lateral Force Monitoring System Using SKFMEC)

  • 김준영;허건수
    • 대한기계학회논문집A
    • /
    • 제24권7호
    • /
    • pp.1871-1877
    • /
    • 2000
  • Longitudinal and lateral forces acting at tire are known to be closely related to the tractive ability, braking characteristics, handling stability and maneuverability of ground vehicles. However, it is not feasible in the operating vehicles to measure the tire forces directly because of high cost of sensors, limitations in sensor technology, interference with the tire rotation and harsh environment. In this paper, in order to develop tire force monitoring system, a new vehicle dynamics monitoring model is proposed including the roll motion. Based on the monitoring model, tire force monitoring system is designed to estimate the lateral tire force acting at each tire. A newly proposed SKFMEC (Scaled Kalman Filter with Model Emr Compensator) method is developed utilizing the conventional EKF (Extended Kalman Filter) method. Tire force estimation performance of the SKFMEC method is evaluated in the Matlab simulations where true tire force data is generated from a 14 DOF vehicle model with a combined-slip Magic Formula tire model.