• Title/Summary/Keyword: Macroscopic depletion

Search Result 5, Processing Time 0.02 seconds

Development and validation of multiphysics PWR core simulator KANT

  • Taesuk Oh;Yunseok Jeong;Husam Khalefih;Yonghee Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2230-2245
    • /
    • 2023
  • KANT (KAIST Advanced Nuclear Tachygraphy) is a PWR core simulator recently developed at Korea Advance Institute of Science and Technology, which solves three-dimensional steady-state and transient multigroup neutron diffusion equations under Cartesian geometries alongside the incorporation of thermal-hydraulics feedback effect for multi-physics calculation. It utilizes the standard Nodal Expansion Method (NEM) accelerated with various Coarse Mesh Finite Difference (CMFD) methods for neutronics calculation. For thermal-hydraulics (TH) calculation, a single-phase flow model and a one-dimensional cylindrical fuel rod heat conduction model are employed. The time-dependent neutronics and TH calculations are numerically solved through an implicit Euler scheme, where a detailed coupling strategy is presented in this paper alongside a description of nodal equivalence, macroscopic depletion, and pin power reconstruction. For validation of the steady, transient, and depletion calculation with pin power reconstruction capacity of KANT, solutions for various benchmark problems are presented. The IAEA 3-D PWR and 4-group KOEBERG problems were considered for the steady-state reactor benchmark problem. For transient calculations, LMW (Lagenbuch, Maurer and Werner) LWR and NEACRP 3-D PWR benchmarks were solved, where the latter problem includes thermal-hydraulics feedback. For macroscopic depletion with pin power reconstruction, a small PWR problem modified with KAIST benchmark model was solved. For validation of the multi-physics analysis capability of KANT concerning large-sized PWRs, the BEAVRS Cycle1 benchmark has been considered. It was found that KANT solutions are accurate and consistent compared to other published works.

Cross section generation for a conceptual horizontal, compact high temperature gas reactor

  • Junsu Kang;Volkan Seker;Andrew Ward;Daniel Jabaay;Brendan Kochunas;Thomas Downar
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.933-940
    • /
    • 2024
  • A macroscopic cross section generation model was developed for the conceptual horizontal, compact high temperature gas reactor (HC-HTGR). Because there are many sources of spectral effects in the design and analysis of the core, conventional LWR methods have limitations for accurate simulation of the HC-HTGR using a neutron diffusion core neutronics simulator. Several super-cell model configurations were investigated to consider the spectral effect of neighboring cells. A new history variable was introduced for the existing library format to more accurately account for the history effect from neighboring nodes and reactivity control drums. The macroscopic cross section library was validated through comparison with cross sections generated using full core Monte Carlo models and single cell cross section for both 3D core steady-state problems and 2D and 3D depletion problems. Core calculations were then performed with the AGREE HTR neutronics and thermal-fluid core simulator using super-cell cross sections. With the new history variable, the super-cell cross sections were in good agreement with the full core cross sections even for problems with significant spectrum change during fuel shuffling and depletion.

McCARD/MIG stochastic sampling calculations for nuclear cross section sensitivity and uncertainty analysis

  • Ho Jin Park
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4272-4279
    • /
    • 2022
  • In this study, a cross section stochastic sampling (S.S.) capability is implemented into both the McCARD continuous energy Monte Carlo code and MIG multiple-correlated data sampling code. The ENDF/B-VII.1 covariance data based 30 group cross section sets and the SCALE6 covariance data based 44 group cross section sets are sampled by the MIG code. Through various uncertainty quantification (UQ) benchmark calculations, the McCARD/MIG results are verified to be consistent with the McCARD stand-alone sensitivity/uncertainty (S/U) results and the XSUSA S.S. results. UQ analyses for Three Mile Island Unit 1, Peach Bottom Unit 2, and Kozloduy-6 fuel pin problems are conducted to provide the uncertainties of keff and microscopic and macroscopic cross sections by the McCARD/MIG code system. Moreover, the SNU S/U formulations for uncertainty propagation in a MC depletion analysis are validated through a comparison with the McCARD/MIG S.S. results for the UAM Exercise I-1b burnup benchmark. It is therefore concluded that the SNU formulation based on the S/U method has the capability to accurately estimate the uncertainty propagation in a MC depletion analysis.

Analyze of I-V Characteristics and Amorphous Sturcture by XRD Patterns (XRD 패턴에 의한 비정질구조와 I-V 특성분석)

  • Oh, Teresa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.16-19
    • /
    • 2019
  • A thinner film has superior electrical properties and a better amorphous structure. Amorphous structures can be effective in improving conductivity through a depletion effect. Research is needed on the Schottky contact, where potential barriers are formed, as a way to identify these characteristics. $SiO_2/SnO_2$ thin films were prepared to examine the amorphous structure and Schottky contact, $SiO_2$ thin films were prepared using Ar = 20 sccm. $SnO_2$ thin films were deposited using mixed gas with a flow rate of argon and oxygen at 20 sccm, and $SnO_2$ thin films were added by magnetron sputtering and treated at $100^{\circ}C$ and $150^{\circ}C$. To identify the conditions under which the amorphous structure was constructed, the XRD patterns were investigated and C-V and I-V measurements were taken to make Al electrodes and perform electrical analysis. The depletion layer was formed by the recombination of electrons and holes through the heat treatment process. $SiO_2/SnO_2$ thin films confirmed that the pores were well formed when heat treated at $100^{\circ}C$ and an electric current was applied over the micro area. An amorphous $SiO_2/SnO_2$ thin film with heat treatment at $100^{\circ}C$ showed no reflection at $33^{\circ}\;2{\theta}$ in the XRD pattern, and a reflection at $44^{\circ}2\;{\theta}$. The macroscopic view (-30 V

Application of the HELIOS-MASTER Code System on the Criticality Analysis for the SMART-P Spent Fuel Storage (SMART연구로 사용후 연료 저장조의 임계해석에 HELIOS-MASTER계산체계의 적용)

  • Kim, Ha-Yong;Koo, Bon-Seung;Kim, Kyo-Youn;Lee, Chung-Chan;Zee, Sung-Quun
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.2
    • /
    • pp.61-67
    • /
    • 2005
  • The criticality analysis method using HELIOS-MASTER code system, which is the nuclear core analysis code system, was developed for the spent fuel storage of SMART-P reactor. We generated the macroscopic cross section of the geometric model with HELIOS and estimated the criticality of the 3-dimensional model with MASTER for SMART-P spent fuel storage. The validity of criticality analysis method for SMART-P spent fuel storage with the HELIOS-MASTER code system by 3-D MCNP calculation was also verified. The result of the criticality analysis with the HELIOS-MASTER code system is more conservative than that with the MCNP and the accuracy of this result is within the range of an allowable error. Because HELIOS-MASTER can perform the 3-D depletion calculation lot a spent fuel storage, it will be useful to perform the criticality analysis including a burnup credit in future.