• Title/Summary/Keyword: Macrophage cells

Search Result 1,705, Processing Time 0.024 seconds

Comparative Effect on Anti-Inflammatory Activity of the Phellinus linteus and Phellinus linteus Grown in Germinated Brown Rice Extracts in Murine Macrophage RAW 264.7 Cells (상황버섯과 발아현미상황버섯 열수추출물의 Murin Macrophage RAW 264.7 세포에서 항염증 반응 비교)

  • Jeoung, Young-Jun;Choi, Se-Young;An, Chi-Sun;Jeon, Yun-Hee;Park, Dong-Ki;Lim, Beoung-Ou
    • Korean Journal of Medicinal Crop Science
    • /
    • v.17 no.2
    • /
    • pp.97-101
    • /
    • 2009
  • The present study describes the preliminary evaluation of the anti-inflammatory activities of Phellinus linteus (PL) and Phellinus linteus Grow in Germinated Brown Rice (BRPL). In order to effectively screen for anti-inflammatory agents, we first examined the extracts' inhibitory effects on the expression of pro-inflammatory cytokines activated with lipopolysaccharide. Moreover, we examined the inhibitory effects of the PL and BRPL extracts on pro-inflammatory factors such as NO, iNOS, $TNF-{\alpha}$ and $IFN-{\gamma}$ in murine macrophage RAW 264.7 cells. NO production and iNOS expression was significantly augmented in LPS treated cell, the production of NO and iNOS was greater in the BRPL than in the PL group. In addition, protein and mRNA levels of $TNF-{\alpha}$ and $IFN-{\gamma}$ in BRPL showed relatively more potent pro-inflammatory-activity inhibition compared to that of PL. These results suggest that BRPL may have significant effects on inflammatory factors, and may be a potential anti-inflammatory therapeutic materials.

Mizoribine Inhibits Production of Pro-inflammatory Cytokines and $PGE_2$ in Macrophages

  • Han, Shin-Ha;Kim, Kwang-Hee;Kim, Hyun-Yul;Kwon, Jeung-Hak;Han, Nam-Joo;Lee, Chong-Kil;Kim, Kyung-Jae
    • IMMUNE NETWORK
    • /
    • v.7 no.1
    • /
    • pp.31-38
    • /
    • 2007
  • Background: Mizoribine (MZR) is an imidazole nucleoside isolated from Eupenicillium brefeldianum. MZR is currendy in clinical use for patients who have undergone renal transplantation. Therapeutic efficacy of MZR has also been demonstrated in rheumatoid arthritis and lupus nephritis. MZR has been shown to inhibit the proliferation or lymphocytes by interfering with inosine monophosphate dehydrogenase. Since the exact mechanism by which MZR benefits rheumatoid arthritis (RA) is not clear, we investigated the ability of MZR to direct its immunosuppressive influences on other antigen presenting cells, such as macrophages. Methods: Mouse macrophage RAW264.7 cells were stimulated with lipopolysaccharide in the presence of MZR. To elucidate the mechanism of the therapeutic efficacy in chronic inflammatory diseases, we examined the effects of MZR on the production of pro-inflammatory cytokines, nitric oxide (NO) and prostaglandin $E_2\;(PGE_2)$ in macrophages. Results: MZR dose-dependendy decreased the production of nitric oxide and pro- inflammatory cytokines such as tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), interleukins $1{\beta}$ (IL-${\beta}$ and IL-6 $PGE_2$. Examination of gene expression levels showed that the anti-inflammatory effect correlated with the down-regulation of inducible nitiric oxide synthase expression, cycloxygenase-2 expression and TNF-${\alpha}$ gene expression. Conclusion: In this work, we resulted whether MZR $(1.25{\sim}10{\mu}g/ml)$ inhibited macrophage activation by inhibiting secretion of pro-inflammatory cytokines, NO and $PGE_2$. These findings provide an explanation for the therapeutic efficacy of MZR in chronic inflammation-associated diseases.

Comparison of immune response and HPLC analysis for combination of Aconiti Lateralis Radix Preparata and Glycyrrhizae Radix (법제 부자와 감초의 배합 비율에 대한 HPLC 분석 및 면역 활성 비교 연구)

  • Lee, Jin-Ah;Ha, Hye-Kyung;Jung, Da-Young;Seo, Chang-Seob;Lee, Ho-Young;Shin, Hyeun-Kyoo
    • The Korea Journal of Herbology
    • /
    • v.25 no.4
    • /
    • pp.23-29
    • /
    • 2010
  • Objectives : To investigate the immunological activities, we evaluated the combination ratio of Aconiti Lateralis Radix Preparata and Glycyrrhizae Radix (AG) on murine macrophage cell line (RAW 264.7) and ovalbumin/aluminium (OVA/Alum)-immunized mice. Methods : The cellular proliferation and the production of nitric oxide were examined in a macrophage cell line, RAW 264.7 cells, in the presence of the combination ratio of Aconiti Lateralis Radix Preparata and Glycyrrhizae Radix. C57BL/6 mice were immunized intraperitonially with ovalbumin/aluminium ($100{\mu}g/200{\mu}g$) on day 1, 8, and 15. The combination ratio of Aconiti Lateralis Radix Preparata and Glycyrrhizae Radix (1 g/kg/day) was orally administrated for 3 weeks. On day 22, splenocyte and plasma were collected for mitogen-induced proliferation, lymphocyte subpopulation by flow cytometry and measurement of AST (Aspirate aminotransferase), ALT (Alanine aminotransferase), and antibodies (OVA-specific antibodies of the IgG, IgG1, and total IgM classes). Results : Aconiti Lateralis Radix Preparata treatment had no influence on immune responses. The proliferation and NO production of macrophage and proliferation of splenocyte were increased as the higher ratio of Glycrrhizae Radix. The proliferation of splenocyte, lymphocyte subpopulation and production of antibody (total IgM, OVA-specific IgG and OVA-specific IgG1) were increased as the higher ratio of Glycrrhizae Radix on OVA-immunzed mice. Conclusions : These results suggest that the higher ratio of Glycyrrhizae Radix can increase immunological activities such as NO production in RAW264.7 cells, splenocyte proliferation and immunoglobulin production in OVA-immunized mice.

Comparison of Nitric Oxide, Hydrogen Peroxide, and Cytokine Production in RAW 264.7 Cells by Bifidobacterium and Other Intestinal Bacteria

  • Om, Ae-Son;Park, So-Young;Hwang, In-Kyeong;Ji, Geun-Eog
    • Journal of Microbiology and Biotechnology
    • /
    • v.9 no.1
    • /
    • pp.98-105
    • /
    • 1999
  • Intestinal bacteria comprise one-third of the contents of the large intestine in humans. Their interactions with the gastrointestinal immune system induce characteristic immunological responses which stimulate or suppress the host's defense system. RAW 264.7 murine cell line was used as a macrophage model to assess the effects of the exposure to the isolated human intestinal bacteria, Bacteroides, Bifidobacterium, Eubacterium, Streptococcus, and E. coli, on NO (nitric oxide), $H_2O_2$(hydrogen peroxide), and cytokines IL (interleukin)-6 and TNF (tumor necrosis factor)-a production. RAW 264.7 cells were cultured in the presence of heat-killed bacteria for 24 h at concentrations of 0-$50\mu$g/ml. Our results showed that Bacteroides and E. coli stimulated IL-6, TNF-$\alpha$, NO, and $H_2O_2$production at high levels even at $1\mu$g/ml, whereas Bifidobacterium, Eubacterium, and Streptococcus showed a low level of stimulation at $1\mu$g/ml, and a gradual increase as the cell concentration increased up to $50\mu$g/ml. This result suggests that gram-negative Bacteroides and E. coli are better able to stimulate macrophage than gram-positive Bifidobacterium, Streptococcus, and Eubacterium. The in vitro approaches employed here should be useful in further characterization of the effects of intestinal bacteria on gastrointestinal and systemic immunity.

  • PDF

Cytotoxicity of Diesel Exhaust Particles from Various Vehicles toward Macrophage Cells (국내 디젤 차량 배기 입자가 쥐 대식세포에 미치는 세포독성 평가)

  • Lee, Jang-Han;Lee, Yong-Kwon;Lee, Ji-Young;Lee, Seung-Bok;Kim, Sun-Hwa;Bae, Gwi-Nam;Lee, Hak-Sung;Lim, Cheol-Soo;Chung, Nam-Hyun
    • Environmental Analysis Health and Toxicology
    • /
    • v.25 no.2
    • /
    • pp.111-120
    • /
    • 2010
  • DEPs (diesel exhaust particles) like any other particles can be also inhaled into lung to participate in a damaging reaction to the organ. Possible damages might be apoptosis and inflammatory responses to the cells in respiratory track. The aim of this study was cytotoxicity evaluation of DEPs from five in-use diesel vehicles using a murine macrophage cell (RAW 254.7). We found that most DEPs have a considerable cytotoxicity compared to the control and SRM 2975. When measured by MTT assay and extents of apoptosis, DEPs of two highmileage vehicles had higher toxicity than those of the other three low-mileage vehicles tested. Although mRNA expression level of TNF-${\alpha$ somewhat explains the trend of cytotoxicity and apoptosis, that of IL-1$\beta$ did not. Correlation studies among the extents of MTT assay, apoptosis, and TNF-$\alpha$ expression showed that the extents between apoptosis and TNF-$\alpha$ expression was most highly correlated (r=0.96). These results suggest that cytotoxicity of various DEPs could be compared easily by measuring the extent of apoptosis or TNF-$\alpha$ expression by DEPs.

Ionomycin Recovers Taurine Transporter Activity in Cyclosporin A Treated macrophages

  • Kim, Ha-Won;Lee, Eun-Jin;Kim, Won-Bae;Hyun, Jin -Won;Kim, Byung-Kak
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.4
    • /
    • pp.265-269
    • /
    • 1999
  • Taurine is a major $\beta$-amino acid in various tissues. Taurine transporter (TAUT) is responsible for the transportation of taurine in the cell. The transporter is affected by various stimuli to maintain its cell volume. Macrophage cell volume varies in its activated states. In our experiment, it was found that the murine macrophage cell line, RAW264.7, expressed TAUT protein in its membrane. Its transportation activities could be blocked by a $\beta$-amino acid such as $\beta$-alanine, but not by $\alpha$-amino acids in this cell line. When assessed in RAW264.7 under the influence of immunosuppressive reagents, the activity of the TAUT was decreased by the treatment of rapamycin (RM) or cyclosporin A (CsA). However when ionomycin (IM) was added to this system, TAUT activity was recovered only in CsA-treated cells in a concentration-dependent manner. In order to inhibit the voltage gated {TEX}$Ca^{+2}${/TEX} channel, calmidazolium was added to the RAW264.7 cell line. Treatment of the cell with calmidazolium completely blocked TAUT. Furthermore, addition of IM to this system recovered the activity of TAUT again. When we added phorbol myristate acetate (PMA) to the cell line, secretion of nitric oxide (NO) was increased 4-fold and the TAUT activity was decreased 5-fold. However, the addition of N-nitro L-arginine methyl ester (L-NAME), an inducible NO synthase (iNOS) inhibitor, to the PMA-treated cells, resulted in the recovery of TAUT activity. These results showed that the activity of TAUT was sensitive to the intracellular concentrations of both {TEX}$Ca^{+2}${/TEX} and NO.

  • PDF

Effects of Phytoecdysteroid on the Proliferation and Activity of Bone Cells (Phytoecdysteroid가 조골세포와 파골세포의 성장과 활성에 미치는 영향)

  • Ko, Seon-Yle
    • Journal of Oral Medicine and Pain
    • /
    • v.32 no.2
    • /
    • pp.129-135
    • /
    • 2007
  • Ecdysteroids are known as insect molting hormone. At the same time, ecdysteroids and plant ecdysteroids (phytoecdysteorids) reveal beneficial effects on mammal. The present study was undertaken to determine the possible cellular mechanism of action of phytoecdysteroids in bone metabolism. The effects on the osteoblasts were determined by measuring cell proliferation, alkaline phosphatase (ALP) activity, and gelatinase activity. The effects on the osteoclasts were investigated by measuring tartrate-resistant acid phosphatase (TRAP)(+) multinucleated cells (MNCs) formation after culturing osteoclast precursors. Phytoecdysteroid treatment showed a increase in ALP activity of osteoblasts. Phytoecdysteroid increased the activity of gelatinase. In addition, phytoecdysteroid decreased the osteoclast generation induced by macrophage-colony stimulating factor (M-CSF) and receptor activator of NF-kB ligand (RANKL) in (M-CSF)-dependent bone marrow macrophage (MDBM) cell cultures. Taken these results, phytoecdysteroid may be a regulatory protein within the bone marrow microenvironment.

Isolation of the Constituent Inhibiting Nitric Oxide formation from Lycopus lucidus in LPS-induced Macrophage Cells (LPS로 유도한 대식세포에서 Nitric Oxide 생성을 저해하는 쉽싸리 성분의 분리)

  • Park, Hee-Juhn
    • Korean Journal of Plant Resources
    • /
    • v.32 no.4
    • /
    • pp.264-269
    • /
    • 2019
  • This research was performed to identify the anti-inflammatory constituent from the herb of Lycorus lucidus (Lamiaceae). The MeOH extract of this plant material and its two fractions, the lipophilic- ($CHCl_3$ fraction) and the hydrophilic fraction (BuOH fraction), were prepared to test anti-inflammatory activity. For this purpose, the inhibition rate on inducible nitric oxide synthase (iNOS) activity was assessed by determining nitric oxide (NO) formation in lipopolysaccharide (LPS)-induced macrophage 264.7 cells. The $CHCl_3$ fraction that greatly inhibited nitric NO formation was chromatographed to lead the isolation of ursolic acid. Since ursolic acid inhibited NO formation dose dependently in this study, this compound was considered as one of the active constituent responsible for anti-inflammation. However, the activity of rosmarinic acid isolated from the BuOH fraction was weak.

Rhodanthpyrone A and B play an anti-inflammatory role by suppressing the nuclear factor-κB pathway in macrophages

  • Kim, Kyeong Su;Han, Chang Yeob;Han, Young Taek;Bae, Eun Ju
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.6
    • /
    • pp.493-499
    • /
    • 2019
  • Macrophage-associated inflammation is crucial for the pathogenesis of diverse diseases including metabolic disorders. Rhodanthpyrone (Rho) is an active component of Gentiana rhodantha, which has been used in traditional Chinese medicine to treat inflammation. Although synthesis procedures of RhoA and RhoB were reported, the biological effects of the specific compounds have never been explored. In this study, the anti-inflammatory activity and mechanisms of action of RhoA and RhoB were studied in lipopolysaccharide (LPS)-stimulated macrophages. Pretreatment with RhoA and RhoB decreased inducible nitric oxide synthase and cyclooxygenase-2 expressions in RAW 264.7 cells and in thioglycollate-elicited mouse peritoneal macrophages. In addition, it downregulated transcript levels of several inflammatory genes in LPS-stimulated RAW 264.7 cells, including inflammatory cytokines/chemokines (Tnfa, Il6, and Ccl2) and inflammatory mediators (Nos2 and Ptgs2). Macrophage chemotaxis was also inhibited by treatment with the compounds. Mechanistic studies revealed that RhoA and RhoB suppressed the nuclear factor $(NF)-{\kappa}B$ pathway, but not the canonical mitogen activated protein kinase pathway, in LPS-stimulated condition. Moreover, the inhibitory effect of RhoA and RhoB on inflammatory gene expressions was attenuated by treatment with an $NF-{\kappa}B$ inhibitor. Our findings suggest that RhoA and RhoB play an anti-inflammatory role at least in part by suppressing the $NF-{\kappa}B$ pathway during macrophage-mediated inflammation.

Regulation of tumor-associated macrophage (TAM) differentiation by NDRG2 expression in breast cancer cells

  • Lee, Soyeon;Lee, Aram;Lim, Jihyun;Lim, Jong-Seok
    • BMB Reports
    • /
    • v.55 no.2
    • /
    • pp.81-86
    • /
    • 2022
  • Macrophages are a major cellular component of innate immunity and are mainly known to have phagocytic activity. In the tumor microenvironment (TME), they can be differentiated into tumor-associated macrophages (TAMs). As the most abundant immune cells in the TME, TAMs promote tumor progression by enhancing angiogenesis, suppressing T cells and increasing immunosuppressive cytokine production. N-myc downstream-regulated gene 2 (NDRG2) is a tumor suppressor gene, whose expression is down-regulated in various cancers. However, the effect of NDRG2 on the differentiation of macrophages into TAMs in breast cancer remains elusive. In this study, we investigated the effect of NDRG2 expression in breast cancer cells on the differentiation of macrophages into TAMs. Compared to tumor cell-conditioned medium (TCCM) from 4T1-mock cells, TCCM from NDRG2-over-expressing 4T1 mouse breast cancer cells did not significantly change the morphology of RAW 264.7 cells. However, TCCM from 4T1-NDRG2 cells reduced the mRNA levels of TAM-related genes, including MR1, IL-10, ARG1 and iNOS, in RAW 264.7 cells. In addition, TCCM from 4T1-NDRG2 cells reduced the expression of TAM-related surface markers, such as CD206, in peritoneal macrophages (PEM). The mRNA expression of TAM-related genes, including IL-10, YM1, FIZZ1, MR1, ARG1 and iNOS, was also downregulated by TCCM from 4T1-NDRG2 cells. Remarkably, TCCM from 4T1-NDRG2 cells reduced the expression of PD-L1 and Fra-1 as well as the production of GM-CSF, IL-10 and ROS, leading to the attenuation of T cell-inhibitory activity of PEM. These data showed that compared with TCCM from 4T1-mock cells, TCCM from 4T1-NDRG2 cells suppressed the TAM differentiation and activation. Collectively, these results suggest that NDRG2 expression in breast cancer may reduce the differentiation of macrophages into TAMs in the TME.