• Title/Summary/Keyword: Macrophage cells

Search Result 1,705, Processing Time 0.033 seconds

Platycodon grandiflorum Extracts Exhibits Anti-inflammatory Properties by Down-regulating MAPK Signaling Pathways Lipopolysaccharide-treated RAW264.7 Cells

  • Kim, Hyeon Jin;Jeong, Seong-Yun;Kim, Jin-Kyung
    • Biomedical Science Letters
    • /
    • v.18 no.4
    • /
    • pp.369-376
    • /
    • 2012
  • Platycodon grandiflorum is a medicinal herb that is used to treat pulmonary and respiratory allergic disorders. The objective of this study was to investigate the protective effects of ethyl acetate extract of Platycodon grandiflorum (PGEA) against inflammation and to discern the molecular mechanism of PGEA in lipopolysaccharide (LPS)-induced signal pathways in RAW264.7 macrophage cells. PGEA suppressed the generation of nitric oxide (NO) and the expression of inducible NO synthase induced by LPS in RAW264.7 cells, and inhibited the release of pro-inflammatory cytokines induced by LPS in RAW264.7 cells. Western blot analysis showed that PGEA suppressed LPS-induced phosphorylation of p38 and c-Jun N-terminal kinase (JNK) but not extracellular signal-regulated kinase and $I{\kappa}-B{\alpha}$ degradation. Inactivation of JNK and p38 was effectively alleviated by PGEA, which subsequently affected the activation of c-Jun and c-Fos, which are the essential components of the activator protein-1 (AP-1) transcription complex. Taken together, the results indicate PGEA suppress the activation of p38, JNK, and AP-1, thereby inhibiting the generation of NO and pro-inflammatory cytokines, which affect the regulation of inflammation. PGEA may be useful for the treatment of various inflammatory diseases.

Ethanol Extract of Ulmus pumila Ameliorates Heat Stress through the Induction of Heat Shock Proteins Expression in RAW264.7 Macrophage Cells

  • dela Cruz, Joseph;Byambaragchaa, Munkhzaya;Choi, Seok-Geun;Hwang, Seong-Gu
    • Journal of Animal Environmental Science
    • /
    • v.20 no.4
    • /
    • pp.147-154
    • /
    • 2014
  • Heat stress is a significant burden to animal production in most areas of the world. Improving our knowledge of physiological and metabolic mechanisms of acclimation may contribute to the development of procedures that may help to maintain health and production efficiency under hot temperature. The effect of Ulmus pumila (UP) extract in inducing Heat Shock Proteins (HSPs) expression in heat-stressed RAW264.7 macrophage cells was investigated. Cell viability assay showed a dose dependent increase in cells after treatment with UP for 24 hours. RT-PCR and western blot analysis showed that increasing concentrations of UP induce the expression of Heat Shock Factor 1 (HSF1) and dose dependently upregulated the expression of Heat shock protein 70 (Hsp70) and Hsp90. LPS-induced nitric oxide was dose-dependently reduced while phagocytic activity greatly recovered with UP treatment. These data demonstrated that UP can be a potential candidate in the development of cytoprotective agent against heat stress.

Molecular Mechanisms of Inhibitory Activities of Tanshinones on Lipopolysaccharide-Induced Nitric Oxide Generation in RAW 264.7 Cells

  • Choi, Hong-Seok;Cho, Dong-Im;Choi, Hoo-Kyun;Im, Suhn-Yong;Ryu, Shi-Yong;Kim , Kyeong-Man
    • Archives of Pharmacal Research
    • /
    • v.27 no.12
    • /
    • pp.1233-1237
    • /
    • 2004
  • The effects of four tanshinones isolated from Tanshen (the root of Salvia miltiorrhiza Bunge, Labiatae) were tested for their inhibition of nitric oxide production in macrophage cells, and the underlying molecular mechanisms studied. Of the four tanshinones used, 15, 16-dihydrotanshinone- I, tanshinone-IIA and cryptotanshinone, but not tanshinone I, demonstrated significant inhibition of the LPS-induced nitric oxide production in RAW 264.7 cells, with calculated $IC_{50}$ values of 5, 8, and 1.5 ${\mu}M$ , respectively. Tanshinones exerted inhibitory activities on the LPS-induced nitric oxide production only when applied concurrently with LPS, and tanshinone- IIA and cryptotanshinone were found to inhibit LPS-induced NF-$_KB$ mobilization and extracellular- regulated kinase (ERK) activation, respectively. These results suggest that tanshinones inhibit LPS-induced nitric oxide generation by interfering with the initial stage of LPS-induced expression of certain genes. NF-$_KB$ and ERK could be the molecular targets for tanshinones for the inhibition of LPS-induced nitric oxide production in macrophage cells.

Raloxifene, a Selective Estrogen Receptor Modulator, Inhibits Lipopolysaccharide-induced Nitric Oxide Production by Inhibiting the Phosphatidylinositol 3-Kinase/Akt/Nuclear Factor-kappa B Pathway in RAW264.7 Macrophage Cells

  • Lee, Sin-Ae;Park, Seok Hee;Kim, Byung-Chul
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.48-52
    • /
    • 2008
  • We here demonstrate an anti-inflammatory action of raloxifene, a selective estrogen receptor modulator, in lipopolysaccharide (LPS)-induced murine macrophage RAW264.7 cells. Treatment with raloxifene at micromolar concentrations suppressed the production of nitric oxide (NO) by down-regulating expression of the inducible nitric oxide synthase (iNOS) gene in LPS-activated cells. The decreased expression of iNOS and subsequent reduction of NO were due to inhibition of nuclear translocation of transcription factor NF-${\kappa}B$. These effects were significantly inhibited by exposure to the phosphatidylinositol 3-kinase (PI 3-kinase) inhibitor, LY294002, or by expression of a dominant negative mutant of PI 3-kinase. In addition, pretreatment with raloxifene reduced LPS-induced Akt phosphorylation as well as NF-${\kappa}B$ DNA binding activity and NF-${\kappa}B$-dependent reporter gene activity. Thus our findings indicate that raloxifene exerts its anti-inflammatory action in LPS-stimulated macrophages by blocking the PI 3-kinase-Akt-NF-${\kappa}B$ signaling cascade, and eventually reduces expression of pro-inflammatory genes such as iNOS.

Anticancer Activities of Red Ginseng Acidic Polysaccharide by Activation of Macrophages and Natural Killer Cells (홍삼 산성 다당체의 마크로파지 및 자연살해세포의 활성화에 의한 항암작용)

  • 김영숙;박경미;신한재;송경식;남기열;박종대
    • YAKHAK HOEJI
    • /
    • v.46 no.2
    • /
    • pp.113-119
    • /
    • 2002
  • The composition of monosaccharides of acidic polysaccharide isolated from ethanol-insoluble and water-soluble fractions of red ginseng roots was analysed and its immunological activities were investigated. Red ginseng acidic polysaccharide (RGAP) was composed of glucose (26.1 mole %), arabinose (1.6 mole %), glucuroninc acid (51.8 mol %) and galacturonic acid (5.1 mole %) as determined by gas liquid chromatography. Addition of RGAP increased production of nitric oxide (NO) and tumor necrosis factor (TNF)-$\alpha$ in the rodent macrophage cultures. Peritoneal macrophages from RGAP-treated mice exhibited potent tumoricidal activities toward P815 and WEHI 164 tumor cells. It was also observed that concentrations of NO and TNF-$\alpha$ were high in the culture medium of macrophages from the mice administered with RGAP. Moreover, treatment of RGAP in vivo stimulated tumoricidal activities of natural killer (NK) cells. Treatment with RGAP increased life span of sarcoma 180-bearing mice and decreased tumor weights of B16-tumor-bearing mice. These results suggest that activation of macrophages and NK cells serve to enhance in vivo anticancer activities of RGAP.

Effect of Dipsaci Radix Water Extract on LPS-induced Inflammatory Response in RAW264.7 Mouse Macrophages (속단(續斷)의 RAW264.7 세포에서 LPS에 의해 유도되는 염증반응에 대한 효과)

  • Min, Ji-Young;Park, Yong-Ki
    • The Korea Journal of Herbology
    • /
    • v.24 no.4
    • /
    • pp.189-195
    • /
    • 2009
  • Objectives : In this study, the effect of Dipsaci Radix(DR, Dipsacus asperoides C.Y. Cheng et T. M. Ai) water extract on LPS-induced inflammatory response in RAW264.7 cells were investigated. Methods : Dried roots of DR was extracted with water for 3 h(DR-W extract). RAW264.7 cells, a mouse macrophage line, were incubated with different concentrations of DR-W extract for 30 min and then stimulated with LPS at indicated times. Cell toxicity was determined by MTT assay. The concentrations of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$) were measured by Griess assay and enzyme immunoassay (EIA), respectively. The expression of inducible nitric oxide synthease (iNOS) and cyclooxyganase (COX)-2 mRNA and protein was determined by RT-PCR and Western blot, respectively. Results : DR-W extract was significantly inhibited LPS-induced productions of NO and PGE2 in RAW264.7 cells. DR-W extract was not suppressed the expressions of iNOS mRNA and protein in LPS-stimulated RAW264.7 cells. Conclusions : This study suggests that DR-W extract can attenuate inflammatory response via inhibition of the NO and PGE2 production in activated macrophages.

Agastache rugosa modulates productions of inflammatory mediators in RAW 264.7 stimulated by lipopolysaccharide (배초향이 RAW 264.7의 염증인자 생성에 미치는 영향)

  • Park, Wansu
    • The Korea Journal of Herbology
    • /
    • v.37 no.1
    • /
    • pp.41-50
    • /
    • 2022
  • Objectives : The aim of this study was to investigate the effect of water extract of Agastache rugosa (AR) on productions of inflammatory mediators in lipopolysaccharide (LPS)-stimulated RAW 264.7 mouse macrophages. Methods : Cell viabilities were measured with MTT assay. The production of nitric oxide (NO) from RAW 264.7 cells was measured with Griess reagent assay. The production of cytokines in RAW 264.7 cells was measured with multiplex cytokine assay. Results : AR showed no cytotoxicity on RAW 264.7 cells. AR at concentrations of 25, 50, 100, and 200 ㎍/mL significantly inhibited NO production in LPS-stimulated RAW 264.7 cells. AR at concentrations of 50, 100, and 200 ㎍/mL significantly inhibited productions of TNF-α and IL-1β in LPS-stimulated RAW 264.7 cells; AR at concentrations of 50 and 200 ㎍/mL significantly inhibited productions of RANTES (CCL5) in LPS-stimulated RAW 264.7 cells; AR at concentrations of 100 ㎍/mL significantly inhibited productions of macrophage inflammatory protein-1β in LPS-stimulated RAW 264.7 cells; AR at concentrations of 50, 100, and 200 ㎍/mL significantly increased productions of IP-10 (CXCL10) in LPS-stimulated RAW 264.7 cells; AR at concentrations of 100 and 200 ㎍/mL significantly increased MCP-1 (CCL-2) in LPS-stimulated RAW 264.7 cells; AR at concentrations of 50 and 100 ㎍/mL significantly increased productions of IL-10 in LPS-stimulated RAW 264.7 cells. Conclusions : AR might have immunomodulatory effects on productions of NO, cytokines, and chemokines in LPS-stimulated RAW 264.7 mouse macrophages.

Analysis of Major Constituents of an Ethanol Extract of Platycodon Grandiflorum Leaves and Protective Effects on Inflammation in Murine Macrophage and Human Lung Carcinoma Cells (도라지 잎 에탄올 추출물의 주요 성분 분석 및 마우스 대식세포와 인체 폐암세포에서 항염효과)

  • Jung Min Lee;Byeong Jun Bae;Jee-Lim Choi;Young-Shin Chung
    • The Korean Journal of Food And Nutrition
    • /
    • v.37 no.2
    • /
    • pp.110-122
    • /
    • 2024
  • This study investigated major constituents and anti-inflammatory effects of an ethanol extract of Platycodon grandiflorum leaves. Through HPLC analysis, chlorogenic acid and luteolin-7-O-glucoside were identified as predominant constituents in the ethanol extract. Their anti-inflammatory effects were evaluated using murine macrophage (RAW 264.7 cells) and human lung carcinoma cells (NCI-H292 & A549). The ethanol extract significantly (p<0.01) inhibited the production of nitrite, interleukin-6 (IL-6), and prostaglandin E2 (PGE2) induced by lipopolysaccharide (LPS) in RAW 264.7 cells. Furthermore, the ethanol extract suppressed the expression of cyclooxygenase-2 (COX-2) and inducible NO synthase (iNOS) proteins in RAW 264.7 cells stimulated with LPS. In NCI-H292 and A549 cells, treatment with the ethanol extract significantly (p<0.05) decreased levels of pro-inflammatory cytokines IL-6 and IL-8 induced by IL-1β. The phosphorylation of ERK rather than JNK in the mitogen-activated protein kinase signaling pathway was observed to be a more important mediator in the down-regulation of pro-inflammatory cytokines in NCI-H292 cells. These findings suggest that the ethanol extract of Platycodon grandiflorum leaves containing luteolin-7-O-glucoside exhibits promising anti-inflammatory properties.

IL -1${\beta}$ Expression of Cefodizime on Dendritic cell and Macrophage

  • Joo, Seong-Soo;Kwon, Hee-Seung;Lee, Do-Ik
    • Proceedings of the PSK Conference
    • /
    • 2002.10a
    • /
    • pp.306.3-307
    • /
    • 2002
  • According to recent studies. cefodizime. a third generation cephalosporin antibiotic agent. may potentially have the capability of stimulating chemotactic activity of neutrophils and monocytes as well as the strong immuno-modulator. We have studied to see if cefodizime can be a potential substance inducing an Immunological activities on immune cells. such as dendritic cells and macrophages. In experimental process. dendritic cell and macrophage were taken from mice and mixed with 10${\mu}\ell$/$m\ell$. 50$${\mu}\ell$/$m\ell$, 100${\mu}\ell$/$m\ell$.cefodizime and 1$${\mu}\ell$/$m\ell$ IFN-${\gamma} 10U/$m\ell$+LPS. (omitted)

  • PDF

Effect of Nitric Oxide on ADP-ribose Pyrophosphatase Activity

  • Kim, Jong-Hyun
    • IMMUNE NETWORK
    • /
    • v.5 no.4
    • /
    • pp.199-204
    • /
    • 2005
  • Background: ADP-ribosyl pyrophosphatases (ADPRase) has been known to catalyze the hydrolysis of ADP-ribose to ribose-5-phosphate and AMP. The role of ADPRase has been suggested to sanitize the cell by removing potentially toxic ADP-ribose. In this study, we examined the effect of nitric oxide on ADPRase activity in macrophages. Methods: ADPRase activity was measured in NO-inducing J774 cells. For in vitro experiments, recombinant human ADPRase was prepared in bacteria. Results: ADPRase activity was increased by the treatment of exogenous NO generating reagent, sodium nitroprusside (SNP), in J774 cells. The increased ADPRase activity was mediated by the post-translational modification, likely to cause cADP-ribosylation via nitrosylation of cysteine residue on the enzyme. The stimulation with endogeneous NO inducers, $TNF-{\alpha}/IFN-{\gamma}$, also increased ADPRase activity through NO synthesis. Futhermore, ADPRase activity may be mediated by the post-translational modification of ADPRase, ADP-ribosylation. Conclusion: These results indicate that NO synthesized by macrophage activation plays a critical role in the increase in ADPRase activity following ADP-ribose metabolism.